Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН·м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.