622. Используя соотношение неопределенностей, оценить наименьшие ошибки V в определении скорости электрона и протона, если координаты центра масс этих частиц могут быть установлены с неопределенностью 1 мкм.
623. Какова должна быть кинетическая энергия T протона в моноэнергетическом пучке, используемого для исследования структуры с линейными размерами х=10-13 см
625. Альфа-частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Используя соотношение неопределенностей, оценить ширину L ящика, если известно, что минимальная энергия -частицы T=8МэВ.
627. Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность r радиуса r электронной орбиты и неопределенность p импульса p электрона на такой орбите соответственно связаны следующим образом: r r и p p. Используя эти связи, а также соотношение неопределенностей, найти значение радиуса электронной орбиты, соответствующего минимальной энергии электрона в атоме водорода.
628. Моноэнергетический пучок электронов высвечивает в центре экрана электронно-лучевой трубки пятно радиусом r=10-3 см. Пользуясь соотношением неопределенностей, найти, во сколько раз неопределенность x: координаты электрона на экране в направлении, перпендикулярном оси трубки, меньше размера r пятна. Длину L электронно-лучевой трубки принять равной 0,50 м, а ускоряющее электрон напряжение U — равным 20 кВ.
629. Среднее время жизни t атома в возбужденном состоянии составляет около 10-8 с. При переходе атома в нормальное состояние испускается фотон, средняя длина волны которого равна 400 нм. Оценить относительную ширину / , излучаемой спектральной линии, если не происходит уширения линии за счет других процессов.
630. Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность r радиуса r электронной орбиты и неопределенность р импульса p электрона на такой орбите соответственно связаны следующим образом: r r и p р. Используя эти связи, а также соотношение неопределенностей, определить минимальное значение энергии Тmin электрона в атоме водорода.
631. Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разности En,n+1 соседних энергетических уровней к энергии Еn частицы в трех случаях: 1) n=2; 2) n=5; 3) n ->(.
632. Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l=0,1 нм. Определить в электрон-вольтах наименьшую разность энергетических уровней электрона.
633. Частица в бесконечно глубоком, одномерном прямоугольном потенциальном ящике шириной L находится в возбужденном состоянии (n=3). Определить, в каких точках интервала 0 < х
634. В прямоугольной потенциальной яме шириной L с абсолютно непроницаемыми стенками (0 < x < L) находится частица в основном состоянии. Найти вероятность W местонахождения этой частицы в области 1/4/<3/4.
635. Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике находится в основном состоянии. Какова вероятность W обнаружения частицы в крайней четверти ящика
636. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид , где А — некоторая постоянная; а0 — первый боровский радиус. Найти для основного состояния атома водорода наиболее вероятное расстояние электрона от ядра.
637. Частица находится в основном состоянии в прямоугольной яме шириной L с абсолютно непроницаемыми стенками. Во сколько раз отличаются вероятности местонахождения частицы: W1 — в крайней трети и W2 — в крайней четверти ящика
638. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид , где А — некоторая постоянная; а0 — первый боровский радиус. Найти для основного состояния атома водорода среднее значение кулоновской силы.
639. Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной L. В каких точках в интервале 0 < x < L плотности вероятности нахождения электрона на втором и третьем энергетических уровнях одинаковы Вычислить плотность вероятности для этих точек. Решение пояснить графиком.
640. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид , где А — некоторая постоянная; а0 — первый боровский радиус. Найти для основного состояния атома водорода среднее значение <П> потенциальной энергии.