Симметрия и группы

Список источников >Математика >Симметрия и группы >

Группы симметрии дифференциальных уравнений и релятивистские поля

Автор: Владимиров С.А.
Год: 1979
Издание:

Страниц: [не указано]
ISBN: [не указан]
В книге систематически развиваются методы построения непрерывных групп симметрии квазилинейных дифференциальных уравнений в частных производных. Исследование ведется для групп с коммутирующими и антикоммутирующими параметрами и без предположения линейности группы преобразований. Доказаны теоремы, позволяющие эффективно разыскивать максимальные в смысле С.Ли группы симметрии и строить инвариантные дифференциальные уравнения. Приложение общих результатов сконцентрировано в области анализа групп симметрии релятивистских полей. Систематически исследуются взаимодействующие поля спина 0, 1/2 и 1. Обнаружены существенно нелинейные спинорные и скалярные уравнения, допускающие бесконечные группы, а также конформно инвариантные уравнения нового типа. Для простейшей суперсимметричной модели получены новые сохраняющиеся спинорные заряды. Изучен новый класс вращательно-инвариантных уравнений, для которого обнаружено значительное расширение исходной группы симметрии. Книга адресована физикам, математикам и механикам, интересующимся теоретико-групповыми методами в теории поля и в механике сплошной среды, а также студентам и аспирантам, прослушавшим вводный курс теории групп.
Добавлено: 2009-08-09 01:26:37

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы