Функциональный анализ. Теория функций

Список источников >Нехудожественная литература >Научная и техническая литература >Естественные науки >Физико-математические науки >Математика >Математический анализ. Функциональный анализ >Функциональный анализ. Теория функций >

Geometric approach to evolution problems in metric spaces

Автор: Igor Stojkovic
Год: 2011
Издание: LAP Lambert Academic Publishing
Страниц: 240
ISBN: 9783845435633
This PhD thesis contains four chapters where research material on a range of different topics is presented. The used and developed techniques fall within the scope of analysis, probability and metric geometry, while a significant part of the manuscript contributes to the optimal transportation theory. In the second chapter the product formulas for semigroups induced by convex functionals in general CAT(0) spaces are proven---extending the classical results in Hilbert spaces. Third chapter contains a treatment of the non-symmetric Fokker-Planck equation as a flow on the Wasserstein-2 space of probability measures---we prove that its semigroup of solutions possesses similar properties to the properties of the gradient flow semigroups. In the forth chapter a general theory of maximal monotone operators and the induced flows on Wasserstein-2 spaces over Euclidean spaces is developed. This theory generalizes the theory of gradient flows by Ambrosio-Gigli-Savare. In the fifth chapter the...
Добавлено: 2017-05-26 12:26:39

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы