Общие вопросы математики

Список источников > Нехудожественная литература > Научная и техническая литература > Естественные науки > Физико-математические науки > Математика > Общие вопросы математики

EQUIVARIANT SYMPLECTIC HODGE THEORY AND STRONG LEFSCHETZ MANIFOLDS

Автор: Yi Lin
Год: 2009
Издание: LAP Lambert Academic Publishing
Страниц: 88
ISBN: 9783838318356
Consider the Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We first establish an equivariant version of the Merkulov-Guillemin d?-lemma, and an improved version of the Kirwan-Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension. We then proceed to extend the equivariant d?-lemma to equivariant differential forms with generalized coefficients. Finally we investigate the subtle differences between an equivariant Kaehler manifold and a Hamiltonian symplectic manifold with the strong Lefscehtz property. Among other things, we construct six-dimensional compact non-Kaehler Hamiltonian circle manifolds which each satisfy the Hard Lefschetz property, but nevertheless each have a symplectic quotient which does not satisfy the strong Lefschetz property. As an aside we prove that the strong Lefschetz property, unlike that of equivariant Kaehler...
Добавлено: 2017-05-26 12:32:19