Таблица истинности для функции ((X∨¬Y)∨((Z→¬X)∨X)):


Промежуточные таблицы истинности:
¬Y:
Y¬Y
01
10

X∨(¬Y):
XY¬YX∨(¬Y)
0011
0100
1011
1101

¬X:
X¬X
01
10

Z→(¬X):
ZX¬XZ→(¬X)
0011
0101
1011
1100

(Z→(¬X))∨X:
ZX¬XZ→(¬X)(Z→(¬X))∨X
00111
01011
10111
11001

(X∨(¬Y))∨((Z→(¬X))∨X):
XYZ¬YX∨(¬Y)¬XZ→(¬X)(Z→(¬X))∨X(X∨(¬Y))∨((Z→(¬X))∨X)
000111111
001111111
010001111
011001111
100110111
101110011
110010111
111010011

Общая таблица истинности:

XYZ¬YX∨(¬Y)¬XZ→(¬X)(Z→(¬X))∨X((X∨¬Y)∨((Z→¬X)∨X))
000111111
001111111
010001111
011001111
100110111
101110011
110010111
111010011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы