Таблица истинности для функции F∧(C∧D)≡(C∨D)∧(C∨D):


Промежуточные таблицы истинности:
C∧D:
CDC∧D
000
010
100
111

C∨D:
CDC∨D
000
011
101
111

F∧(C∧D):
FCDC∧DF∧(C∧D)
00000
00100
01000
01110
10000
10100
11000
11111

(C∨D)∧(C∨D):
CDC∨DC∨D(C∨D)∧(C∨D)
00000
01111
10111
11111

(F∧(C∧D))≡((C∨D)∧(C∨D)):
FCDC∧DF∧(C∧D)C∨DC∨D(C∨D)∧(C∨D)(F∧(C∧D))≡((C∨D)∧(C∨D))
000000001
001001110
010001110
011101110
100000001
101001110
110001110
111111111

Общая таблица истинности:

FCDC∧DC∨DF∧(C∧D)(C∨D)∧(C∨D)F∧(C∧D)≡(C∨D)∧(C∨D)
00000001
00101010
01001010
01111010
10000001
10101010
11001010
11111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FCDF
0001
0010
0100
0110
1001
1010
1100
1111
Fсднф = ¬F∧¬C∧¬D ∨ F∧¬C∧¬D ∨ F∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FCDF
0001
0010
0100
0110
1001
1010
1100
1111
Fскнф = (F∨C∨¬D) ∧ (F∨¬C∨D) ∧ (F∨¬C∨¬D) ∧ (¬F∨C∨¬D) ∧ (¬F∨¬C∨D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FCDFж
0001
0010
0100
0110
1001
1010
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧F ⊕ C010∧C ⊕ C001∧D ⊕ C110∧F∧C ⊕ C101∧F∧D ⊕ C011∧C∧D ⊕ C111∧F∧C∧D

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ C ⊕ D ⊕ C∧D ⊕ F∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы