Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬X1∧¬X2∧¬X3∨¬X1∧X2∧¬X3∨X1∧¬X2∧X3∨X1∧X2∧¬X3:
Промежуточные таблицы истинности:¬X1: ¬X2: ¬X3: (¬X1)∧(¬X2): X1 | X2 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
((¬X1)∧(¬X2))∧(¬X3): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
(¬X1)∧X2: X1 | X2 | ¬X1 | (¬X1)∧X2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬X1)∧X2)∧(¬X3): X1 | X2 | X3 | ¬X1 | (¬X1)∧X2 | ¬X3 | ((¬X1)∧X2)∧(¬X3) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
X1∧(¬X2): X1 | X2 | ¬X2 | X1∧(¬X2) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
(X1∧(¬X2))∧X3: X1 | X2 | X3 | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
X1∧X2: (X1∧X2)∧(¬X3): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X1 | (¬X1)∧X2 | ¬X3 | ((¬X1)∧X2)∧(¬X3) | (((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X1 | (¬X1)∧X2 | ¬X3 | ((¬X1)∧X2)∧(¬X3) | (((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)) | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | ((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X1 | (¬X1)∧X2 | ¬X3 | ((¬X1)∧X2)∧(¬X3) | (((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)) | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | ((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3) | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | (((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Общая таблица истинности:X1 | X2 | X3 | ¬X1 | ¬X2 | ¬X3 | (¬X1)∧(¬X2) | ((¬X1)∧(¬X2))∧(¬X3) | (¬X1)∧X2 | ((¬X1)∧X2)∧(¬X3) | X1∧(¬X2) | (X1∧(¬X2))∧X3 | X1∧X2 | (X1∧X2)∧(¬X3) | (((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)) | ((((¬X1)∧(¬X2))∧(¬X3))∨(((¬X1)∧X2)∧(¬X3)))∨((X1∧(¬X2))∧X3) | ¬X1∧¬X2∧¬X3∨¬X1∧X2∧¬X3∨X1∧¬X2∧X3∨X1∧X2∧¬X3 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X1∧¬X2∧¬X3 ∨ ¬X1∧X2∧¬X3 ∨ X1∧¬X2∧X3 ∨ X1∧X2∧¬X3 Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (X1∨X2∨¬X3) ∧ (X1∨¬X2∨¬X3) ∧ (¬X1∨X2∨X3) ∧ (¬X1∨¬X2∨¬X3) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X1 | X2 | X3 | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X1 ⊕ C 010∧X2 ⊕ C 001∧X3 ⊕ C 110∧X1∧X2 ⊕ C 101∧X1∧X3 ⊕ C 011∧X2∧X3 ⊕ C 111∧X1∧X2∧X3 Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 1 ⊕ 0 = 1 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 1 ⊕ 0 = 1 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ X1 ⊕ X3 ⊕ X1∧X2 Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|