Таблица истинности для функции A∧¬B⊕(A⊕B):


Промежуточные таблицы истинности:
A⊕B:
ABA⊕B
000
011
101
110

¬B:
B¬B
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

(A∧(¬B))⊕(A⊕B):
AB¬BA∧(¬B)A⊕B(A∧(¬B))⊕(A⊕B)
001000
010011
101110
110000

Общая таблица истинности:

ABA⊕B¬BA∧(¬B)A∧¬B⊕(A⊕B)
000100
011001
101110
110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
011
100
110
Fсднф = ¬A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
011
100
110
Fскнф = (A∨B) ∧ (¬A∨B) ∧ (¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
011
100
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 1 => С01 = 0 ⊕ 1 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы