Таблица истинности для функции (B∨C)∧(BAC):
Промежуточные таблицы истинности:
B∨C:
(B∨C)∧BAC:
Общая таблица истинности:
Логическая схема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C000 ⊕ C100∧B ⊕ C010∧C ⊕ C001∧BAC ⊕ C110∧B∧C ⊕ C101∧B∧BAC ⊕ C011∧C∧BAC ⊕ C111∧B∧C∧BAC
Так как Fж(000) = 0, то С000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
Fж = B∧BAC ⊕ C∧BAC ⊕ B∧C∧BAC
Логическая схема, соответствующая полиному Жегалкина: