Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции X∧Y∨¬X∧Y∨¬X∧¬Y≡X→Y:
Промежуточные таблицы истинности:¬X: ¬Y: X∧Y: (¬X)∧Y: X | Y | ¬X | (¬X)∧Y | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
(¬X)∧(¬Y): X | Y | ¬X | ¬Y | (¬X)∧(¬Y) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
(X∧Y)∨((¬X)∧Y): X | Y | X∧Y | ¬X | (¬X)∧Y | (X∧Y)∨((¬X)∧Y) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)): X | Y | X∧Y | ¬X | (¬X)∧Y | (X∧Y)∨((¬X)∧Y) | ¬X | ¬Y | (¬X)∧(¬Y) | ((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
X→Y: (((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)))≡(X→Y): X | Y | X∧Y | ¬X | (¬X)∧Y | (X∧Y)∨((¬X)∧Y) | ¬X | ¬Y | (¬X)∧(¬Y) | ((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)) | X→Y | (((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)))≡(X→Y) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
Общая таблица истинности:X | Y | ¬X | ¬Y | X∧Y | (¬X)∧Y | (¬X)∧(¬Y) | (X∧Y)∨((¬X)∧Y) | ((X∧Y)∨((¬X)∧Y))∨((¬X)∧(¬Y)) | X→Y | X∧Y∨¬X∧Y∨¬X∧¬Y≡X→Y | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F сднф = ¬X∧¬Y ∨ ¬X∧Y ∨ X∧¬Y ∨ X∧Y Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: В таблице истинности нет набора значений переменных при которых функция ложна!
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: F ж = C 00 ⊕ C 10∧X ⊕ C 01∧Y ⊕ C 11∧X∧Y Так как F ж(00) = 1, то С 00 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(10) = С 00 ⊕ С 10 = 1 => С 10 = 1 ⊕ 1 = 0 F ж(01) = С 00 ⊕ С 01 = 1 => С 01 = 1 ⊕ 1 = 0 F ж(11) = С 00 ⊕ С 10 ⊕ С 01 ⊕ С 11 = 1 => С 11 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|