Таблица истинности для функции A∧B∧V∧¬C:


Промежуточные таблицы истинности:
¬C:
C¬C
01
10

A∧B:
ABA∧B
000
010
100
111

(A∧B)∧V:
ABVA∧B(A∧B)∧V
00000
00100
01000
01100
10000
10100
11010
11111

((A∧B)∧V)∧(¬C):
ABVCA∧B(A∧B)∧V¬C((A∧B)∧V)∧(¬C)
00000010
00010000
00100010
00110000
01000010
01010000
01100010
01110000
10000010
10010000
10100010
10110000
11001010
11011000
11101111
11111100

Общая таблица истинности:

ABVC¬CA∧B(A∧B)∧VA∧B∧V∧¬C
00001000
00010000
00101000
00110000
01001000
01010000
01101000
01110000
10001000
10010000
10101000
10110000
11001100
11010100
11101111
11110110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABVCF
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11101
11110
Fсднф = A∧B∧V∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABVCF
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11101
11110
Fскнф = (A∨B∨V∨C) ∧ (A∨B∨V∨¬C) ∧ (A∨B∨¬V∨C) ∧ (A∨B∨¬V∨¬C) ∧ (A∨¬B∨V∨C) ∧ (A∨¬B∨V∨¬C) ∧ (A∨¬B∨¬V∨C) ∧ (A∨¬B∨¬V∨¬C) ∧ (¬A∨B∨V∨C) ∧ (¬A∨B∨V∨¬C) ∧ (¬A∨B∨¬V∨C) ∧ (¬A∨B∨¬V∨¬C) ∧ (¬A∨¬B∨V∨C) ∧ (¬A∨¬B∨V∨¬C) ∧ (¬A∨¬B∨¬V∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABVCFж
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11101
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧V ⊕ C0001∧C ⊕ C1100∧A∧B ⊕ C1010∧A∧V ⊕ C1001∧A∧C ⊕ C0110∧B∧V ⊕ C0101∧B∧C ⊕ C0011∧V∧C ⊕ C1110∧A∧B∧V ⊕ C1101∧A∧B∧C ⊕ C1011∧A∧V∧C ⊕ C0111∧B∧V∧C ⊕ C1111∧A∧B∧V∧C

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 0 ⊕ 0 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A∧B∧V ⊕ A∧B∧V∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы