Таблица истинности для функции (A∨B)∧(¬A∧V∧¬B):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

¬A:
A¬A
01
10

¬B:
B¬B
01
10

(¬A)∧V:
AV¬A(¬A)∧V
0010
0111
1000
1100

((¬A)∧V)∧(¬B):
AVB¬A(¬A)∧V¬B((¬A)∧V)∧(¬B)
0001010
0011000
0101111
0111100
1000010
1010000
1100010
1110000

(A∨B)∧(((¬A)∧V)∧(¬B)):
ABVA∨B¬A(¬A)∧V¬B((¬A)∧V)∧(¬B)(A∨B)∧(((¬A)∧V)∧(¬B))
000010100
001011110
010110000
011111000
100100100
101100100
110100000
111100000

Общая таблица истинности:

ABVA∨B¬A¬B(¬A)∧V((¬A)∧V)∧(¬B)(A∨B)∧(¬A∧V∧¬B)
000011000
001011110
010110000
011110100
100101000
101101000
110100000
111100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABVF
0000
0010
0100
0110
1000
1010
1100
1110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABVF
0000
0010
0100
0110
1000
1010
1100
1110
Fскнф = (A∨B∨V) ∧ (A∨B∨¬V) ∧ (A∨¬B∨V) ∧ (A∨¬B∨¬V) ∧ (¬A∨B∨V) ∧ (¬A∨B∨¬V) ∧ (¬A∨¬B∨V) ∧ (¬A∨¬B∨¬V)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABVFж
0000
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧V ⊕ C110∧A∧B ⊕ C101∧A∧V ⊕ C011∧B∧V ⊕ C111∧A∧B∧V

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы