Промежуточные таблицы истинности:¬C:
(¬C)∨A:
C | A | ¬C | (¬C)∨A |
0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 |
((¬C)∨A)∧B:
C | A | B | ¬C | (¬C)∨A | ((¬C)∨A)∧B |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 |
A∧B:
(A∧B)∧(¬C):
A | B | C | A∧B | ¬C | (A∧B)∧(¬C) |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 |
(((¬C)∨A)∧B)∨((A∧B)∧(¬C)):
C | A | B | ¬C | (¬C)∨A | ((¬C)∨A)∧B | A∧B | ¬C | (A∧B)∧(¬C) | (((¬C)∨A)∧B)∨((A∧B)∧(¬C)) |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
X≡((((¬C)∨A)∧B)∨((A∧B)∧(¬C))):
X | C | A | B | ¬C | (¬C)∨A | ((¬C)∨A)∧B | A∧B | ¬C | (A∧B)∧(¬C) | (((¬C)∨A)∧B)∨((A∧B)∧(¬C)) | X≡((((¬C)∨A)∧B)∨((A∧B)∧(¬C))) |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Общая таблица истинности:
X | C | A | B | ¬C | (¬C)∨A | ((¬C)∨A)∧B | A∧B | (A∧B)∧(¬C) | (((¬C)∨A)∧B)∨((A∧B)∧(¬C)) | X≡(¬C∨A)∧B∨A∧B∧¬C |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
X | C | A | B | F |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
F
сднф = ¬X∧¬C∧¬A∧¬B ∨ ¬X∧¬C∧A∧¬B ∨ ¬X∧C∧¬A∧¬B ∨ ¬X∧C∧¬A∧B ∨ ¬X∧C∧A∧¬B ∨ X∧¬C∧¬A∧B ∨ X∧¬C∧A∧B ∨ X∧C∧A∧B
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
X | C | A | B | F |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
F
скнф = (X∨C∨A∨¬B) ∧ (X∨C∨¬A∨¬B) ∧ (X∨¬C∨¬A∨¬B) ∧ (¬X∨C∨A∨B) ∧ (¬X∨C∨¬A∨B) ∧ (¬X∨¬C∨A∨B) ∧ (¬X∨¬C∨A∨¬B) ∧ (¬X∨¬C∨¬A∨B)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
X | C | A | B | Fж |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
0000 ⊕ C
1000∧X ⊕ C
0100∧C ⊕ C
0010∧A ⊕ C
0001∧B ⊕ C
1100∧X∧C ⊕ C
1010∧X∧A ⊕ C
1001∧X∧B ⊕ C
0110∧C∧A ⊕ C
0101∧C∧B ⊕ C
0011∧A∧B ⊕ C
1110∧X∧C∧A ⊕ C
1101∧X∧C∧B ⊕ C
1011∧X∧A∧B ⊕ C
0111∧C∧A∧B ⊕ C
1111∧X∧C∧A∧B
Так как F
ж(0000) = 1, то С
0000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(1000) = С
0000 ⊕ С
1000 = 0 => С
1000 = 1 ⊕ 0 = 1
F
ж(0100) = С
0000 ⊕ С
0100 = 1 => С
0100 = 1 ⊕ 1 = 0
F
ж(0010) = С
0000 ⊕ С
0010 = 1 => С
0010 = 1 ⊕ 1 = 0
F
ж(0001) = С
0000 ⊕ С
0001 = 0 => С
0001 = 1 ⊕ 0 = 1
F
ж(1100) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
1100 = 0 => С
1100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(1010) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
1010 = 0 => С
1010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(1001) = С
0000 ⊕ С
1000 ⊕ С
0001 ⊕ С
1001 = 1 => С
1001 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
F
ж(0110) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0110 = 1 => С
0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(0101) = С
0000 ⊕ С
0100 ⊕ С
0001 ⊕ С
0101 = 1 => С
0101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
F
ж(0011) = С
0000 ⊕ С
0010 ⊕ С
0001 ⊕ С
0011 = 0 => С
0011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
F
ж(1110) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
1100 ⊕ С
1010 ⊕ С
0110 ⊕ С
1110 = 0 => С
1110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(1101) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0001 ⊕ С
1100 ⊕ С
1001 ⊕ С
0101 ⊕ С
1101 = 0 => С
1101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
F
ж(1011) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
0001 ⊕ С
1010 ⊕ С
1001 ⊕ С
0011 ⊕ С
1011 = 1 => С
1011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(0111) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
0111 = 0 => С
0111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
F
ж(1111) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
1100 ⊕ С
1010 ⊕ С
1001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
1110 ⊕ С
1101 ⊕ С
1011 ⊕ С
0111 ⊕ С
1111 = 1 => С
1111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
F
ж = 1 ⊕ X ⊕ B ⊕ C∧B ⊕ C∧A∧B
Логическая схема, соответствующая полиному Жегалкина: