Таблица истинности для функции ¬A∧¬B∧C∧C∨A∧¬B∧C∧D∨A∧¬B∧¬C∧D∨A∧B∧¬C∧¬D∧E2:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

¬C:
C¬C
01
10

¬D:
D¬D
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

((¬A)∧(¬B))∧C:
ABC¬A¬B(¬A)∧(¬B)((¬A)∧(¬B))∧C
0001110
0011111
0101000
0111000
1000100
1010100
1100000
1110000

(((¬A)∧(¬B))∧C)∧C:
ABC¬A¬B(¬A)∧(¬B)((¬A)∧(¬B))∧C(((¬A)∧(¬B))∧C)∧C
00011100
00111111
01010000
01110000
10001000
10101000
11000000
11100000

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

(A∧(¬B))∧C:
ABC¬BA∧(¬B)(A∧(¬B))∧C
000100
001100
010000
011000
100110
101111
110000
111000

((A∧(¬B))∧C)∧D:
ABCD¬BA∧(¬B)(A∧(¬B))∧C((A∧(¬B))∧C)∧D
00001000
00011000
00101000
00111000
01000000
01010000
01100000
01110000
10001100
10011100
10101110
10111111
11000000
11010000
11100000
11110000

(A∧(¬B))∧(¬C):
ABC¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)
0001010
0011000
0100010
0110000
1001111
1011100
1100010
1110000

((A∧(¬B))∧(¬C))∧D:
ABCD¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)((A∧(¬B))∧(¬C))∧D
000010100
000110100
001010000
001110000
010000100
010100100
011000000
011100000
100011110
100111111
101011000
101111000
110000100
110100100
111000000
111100000

A∧B:
ABA∧B
000
010
100
111

(A∧B)∧(¬C):
ABCA∧B¬C(A∧B)∧(¬C)
000010
001000
010010
011000
100010
101000
110111
111100

((A∧B)∧(¬C))∧(¬D):
ABCDA∧B¬C(A∧B)∧(¬C)¬D((A∧B)∧(¬C))∧(¬D)
000001010
000101000
001000010
001100000
010001010
010101000
011000010
011100000
100001010
100101000
101000010
101100000
110011111
110111100
111010010
111110000

(((A∧B)∧(¬C))∧(¬D))∧E2:
ABCDE2A∧B¬C(A∧B)∧(¬C)¬D((A∧B)∧(¬C))∧(¬D)(((A∧B)∧(¬C))∧(¬D))∧E2
00000010100
00001010100
00010010000
00011010000
00100000100
00101000100
00110000000
00111000000
01000010100
01001010100
01010010000
01011010000
01100000100
01101000100
01110000000
01111000000
10000010100
10001010100
10010010000
10011010000
10100000100
10101000100
10110000000
10111000000
11000111110
11001111111
11010111000
11011111000
11100100100
11101100100
11110100000
11111100000

((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D):
ABCD¬A¬B(¬A)∧(¬B)((¬A)∧(¬B))∧C(((¬A)∧(¬B))∧C)∧C¬BA∧(¬B)(A∧(¬B))∧C((A∧(¬B))∧C)∧D((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D)
00001110010000
00011110010000
00101111110001
00111111110001
01001000000000
01011000000000
01101000000000
01111000000000
10000100011000
10010100011000
10100100011100
10110100011111
11000000000000
11010000000000
11100000000000
11110000000000

(((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D):
ABCD¬A¬B(¬A)∧(¬B)((¬A)∧(¬B))∧C(((¬A)∧(¬B))∧C)∧C¬BA∧(¬B)(A∧(¬B))∧C((A∧(¬B))∧C)∧D((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)((A∧(¬B))∧(¬C))∧D(((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D)
00001110010000101000
00011110010000101000
00101111110001100001
00111111110001100001
01001000000000001000
01011000000000001000
01101000000000000000
01111000000000000000
10000100011000111100
10010100011000111111
10100100011100110000
10110100011111110001
11000000000000001000
11010000000000001000
11100000000000000000
11110000000000000000

((((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D))∨((((A∧B)∧(¬C))∧(¬D))∧E2):
ABCDE2¬A¬B(¬A)∧(¬B)((¬A)∧(¬B))∧C(((¬A)∧(¬B))∧C)∧C¬BA∧(¬B)(A∧(¬B))∧C((A∧(¬B))∧C)∧D((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)((A∧(¬B))∧(¬C))∧D(((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D)A∧B¬C(A∧B)∧(¬C)¬D((A∧B)∧(¬C))∧(¬D)(((A∧B)∧(¬C))∧(¬D))∧E2((((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D))∨((((A∧B)∧(¬C))∧(¬D))∧E2)
0000011100100001010000101000
0000111100100001010000101000
0001011100100001010000100000
0001111100100001010000100000
0010011111100011000010001001
0010111111100011000010001001
0011011111100011000010000001
0011111111100011000010000001
0100010000000000010000101000
0100110000000000010000101000
0101010000000000010000100000
0101110000000000010000100000
0110010000000000000000001000
0110110000000000000000001000
0111010000000000000000000000
0111110000000000000000000000
1000001000110001111000101000
1000101000110001111000101000
1001001000110001111110100001
1001101000110001111110100001
1010001000111001100000001000
1010101000111001100000001000
1011001000111111100010000001
1011101000111111100010000001
1100000000000000010001111100
1100100000000000010001111111
1101000000000000010001110000
1101100000000000010001110000
1110000000000000000001001000
1110100000000000000001001000
1111000000000000000001000000
1111100000000000000001000000

Общая таблица истинности:

ABCDE2¬A¬B¬C¬D(¬A)∧(¬B)((¬A)∧(¬B))∧C(((¬A)∧(¬B))∧C)∧CA∧(¬B)(A∧(¬B))∧C((A∧(¬B))∧C)∧D(A∧(¬B))∧(¬C)((A∧(¬B))∧(¬C))∧DA∧B(A∧B)∧(¬C)((A∧B)∧(¬C))∧(¬D)(((A∧B)∧(¬C))∧(¬D))∧E2((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D)(((((¬A)∧(¬B))∧C)∧C)∨(((A∧(¬B))∧C)∧D))∨(((A∧(¬B))∧(¬C))∧D)¬A∧¬B∧C∧C∨A∧¬B∧C∧D∨A∧¬B∧¬C∧D∨A∧B∧¬C∧¬D∧E2
000001111100000000000000
000011111100000000000000
000101110100000000000000
000111110100000000000000
001001101111000000000111
001011101111000000000111
001101100111000000000111
001111100111000000000111
010001011000000000000000
010011011000000000000000
010101010000000000000000
010111010000000000000000
011001001000000000000000
011011001000000000000000
011101000000000000000000
011111000000000000000000
100000111000100100000000
100010111000100100000000
100100110000100110000011
100110110000100110000011
101000101000110000000000
101010101000110000000000
101100100000111000000111
101110100000111000000111
110000011000000001110000
110010011000000001111001
110100010000000001100000
110110010000000001100000
111000001000000001000000
111010001000000001000000
111100000000000001000000
111110000000000001000000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDE2F
000000
000010
000100
000110
001001
001011
001101
001111
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100101
100111
101000
101010
101101
101111
110000
110011
110100
110110
111000
111010
111100
111110
Fсднф = ¬A∧¬B∧C∧¬D∧¬E2 ∨ ¬A∧¬B∧C∧¬D∧E2 ∨ ¬A∧¬B∧C∧D∧¬E2 ∨ ¬A∧¬B∧C∧D∧E2 ∨ A∧¬B∧¬C∧D∧¬E2 ∨ A∧¬B∧¬C∧D∧E2 ∨ A∧¬B∧C∧D∧¬E2 ∨ A∧¬B∧C∧D∧E2 ∨ A∧B∧¬C∧¬D∧E2
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDE2F
000000
000010
000100
000110
001001
001011
001101
001111
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100101
100111
101000
101010
101101
101111
110000
110011
110100
110110
111000
111010
111100
111110
Fскнф = (A∨B∨C∨D∨E2) ∧ (A∨B∨C∨D∨¬E2) ∧ (A∨B∨C∨¬D∨E2) ∧ (A∨B∨C∨¬D∨¬E2) ∧ (A∨¬B∨C∨D∨E2) ∧ (A∨¬B∨C∨D∨¬E2) ∧ (A∨¬B∨C∨¬D∨E2) ∧ (A∨¬B∨C∨¬D∨¬E2) ∧ (A∨¬B∨¬C∨D∨E2) ∧ (A∨¬B∨¬C∨D∨¬E2) ∧ (A∨¬B∨¬C∨¬D∨E2) ∧ (A∨¬B∨¬C∨¬D∨¬E2) ∧ (¬A∨B∨C∨D∨E2) ∧ (¬A∨B∨C∨D∨¬E2) ∧ (¬A∨B∨¬C∨D∨E2) ∧ (¬A∨B∨¬C∨D∨¬E2) ∧ (¬A∨¬B∨C∨D∨E2) ∧ (¬A∨¬B∨C∨¬D∨E2) ∧ (¬A∨¬B∨C∨¬D∨¬E2) ∧ (¬A∨¬B∨¬C∨D∨E2) ∧ (¬A∨¬B∨¬C∨D∨¬E2) ∧ (¬A∨¬B∨¬C∨¬D∨E2) ∧ (¬A∨¬B∨¬C∨¬D∨¬E2)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDE2Fж
000000
000010
000100
000110
001001
001011
001101
001111
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100101
100111
101000
101010
101101
101111
110000
110011
110100
110110
111000
111010
111100
111110

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧A ⊕ C01000∧B ⊕ C00100∧C ⊕ C00010∧D ⊕ C00001∧E2 ⊕ C11000∧A∧B ⊕ C10100∧A∧C ⊕ C10010∧A∧D ⊕ C10001∧A∧E2 ⊕ C01100∧B∧C ⊕ C01010∧B∧D ⊕ C01001∧B∧E2 ⊕ C00110∧C∧D ⊕ C00101∧C∧E2 ⊕ C00011∧D∧E2 ⊕ C11100∧A∧B∧C ⊕ C11010∧A∧B∧D ⊕ C11001∧A∧B∧E2 ⊕ C10110∧A∧C∧D ⊕ C10101∧A∧C∧E2 ⊕ C10011∧A∧D∧E2 ⊕ C01110∧B∧C∧D ⊕ C01101∧B∧C∧E2 ⊕ C01011∧B∧D∧E2 ⊕ C00111∧C∧D∧E2 ⊕ C11110∧A∧B∧C∧D ⊕ C11101∧A∧B∧C∧E2 ⊕ C11011∧A∧B∧D∧E2 ⊕ C10111∧A∧C∧D∧E2 ⊕ C01111∧B∧C∧D∧E2 ⊕ C11111∧A∧B∧C∧D∧E2

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 0 ⊕ 0 = 0
Fж(01000) = С00000 ⊕ С01000 = 0 => С01000 = 0 ⊕ 0 = 0
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 0 ⊕ 1 = 1
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 0 => С10001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 0 => С01010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 1 => С00110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 1 => С00111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 0 => С11111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = C ⊕ A∧C ⊕ A∧D ⊕ B∧C ⊕ A∧B∧C ⊕ A∧B∧D ⊕ A∧B∧E2 ⊕ A∧B∧C∧E2 ⊕ A∧B∧D∧E2 ⊕ A∧B∧C∧D∧E2
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы