Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬((X∨Y)∨(Z∨X))∨(Z∨Y):
Промежуточные таблицы истинности:X∨Y: Z∨X: (X∨Y)∨(Z∨X): X | Y | Z | X∨Y | Z∨X | (X∨Y)∨(Z∨X) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Z∨Y: ¬((X∨Y)∨(Z∨X)): X | Y | Z | X∨Y | Z∨X | (X∨Y)∨(Z∨X) | ¬((X∨Y)∨(Z∨X)) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
(¬((X∨Y)∨(Z∨X)))∨(Z∨Y): X | Y | Z | X∨Y | Z∨X | (X∨Y)∨(Z∨X) | ¬((X∨Y)∨(Z∨X)) | Z∨Y | (¬((X∨Y)∨(Z∨X)))∨(Z∨Y) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Общая таблица истинности:X | Y | Z | X∨Y | Z∨X | (X∨Y)∨(Z∨X) | Z∨Y | ¬((X∨Y)∨(Z∨X)) | ¬((X∨Y)∨(Z∨X))∨(Z∨Y) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F сднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F скнф = (¬X∨Y∨Z) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X | Y | Z | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X ⊕ C 010∧Y ⊕ C 001∧Z ⊕ C 110∧X∧Y ⊕ C 101∧X∧Z ⊕ C 011∧Y∧Z ⊕ C 111∧X∧Y∧Z Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 1 ⊕ 0 = 1 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 1 => С 011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 1 => С 111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ X ⊕ X∧Y ⊕ X∧Z ⊕ X∧Y∧Z Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|