Таблица истинности для функции ((A∨¬B)∧(¬B∧¬C))∧(¬A∧C):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

A∨(¬B):
AB¬BA∨(¬B)
0011
0100
1011
1101

¬C:
C¬C
01
10

(¬B)∧(¬C):
BC¬B¬C(¬B)∧(¬C)
00111
01100
10010
11000

(A∨(¬B))∧((¬B)∧(¬C)):
ABC¬BA∨(¬B)¬B¬C(¬B)∧(¬C)(A∨(¬B))∧((¬B)∧(¬C))
000111111
001111000
010000100
011000000
100111111
101111000
110010100
111010000

¬A:
A¬A
01
10

(¬A)∧C:
AC¬A(¬A)∧C
0010
0111
1000
1100

((A∨(¬B))∧((¬B)∧(¬C)))∧((¬A)∧C):
ABC¬BA∨(¬B)¬B¬C(¬B)∧(¬C)(A∨(¬B))∧((¬B)∧(¬C))¬A(¬A)∧C((A∨(¬B))∧((¬B)∧(¬C)))∧((¬A)∧C)
000111111100
001111000110
010000100100
011000000110
100111111000
101111000000
110010100000
111010000000

Общая таблица истинности:

ABC¬BA∨(¬B)¬C(¬B)∧(¬C)(A∨(¬B))∧((¬B)∧(¬C))¬A(¬A)∧C((A∨¬B)∧(¬B∧¬C))∧(¬A∧C)
00011111100
00111000110
01000100100
01100000110
10011111000
10111000000
11001100000
11101000000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1000
1010
1100
1110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1000
1010
1100
1110
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы