Таблица истинности для функции ¬(X→(Y→X)):
Промежуточные таблицы истинности:
Y→X:
X→(Y→X):
¬(X→(Y→X)):
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:Fскнф = (X∨Y) ∧ (X∨¬Y) ∧ (¬X∨Y) ∧ (¬X∨¬Y)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y
Так как Fж(00) = 0, то С00 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Таким образом, полином Жегалкина будет равен:
Fж = 0