Таблица истинности для функции (X≡Y)∨((Y∨Z)∧X):


Промежуточные таблицы истинности:
X≡Y:
XYX≡Y
001
010
100
111

Y∨Z:
YZY∨Z
000
011
101
111

(Y∨Z)∧X:
YZXY∨Z(Y∨Z)∧X
00000
00100
01010
01111
10010
10111
11010
11111

(X≡Y)∨((Y∨Z)∧X):
XYZX≡YY∨Z(Y∨Z)∧X(X≡Y)∨((Y∨Z)∧X)
0001001
0011101
0100100
0110100
1000000
1010111
1101111
1111111

Общая таблица истинности:

XYZX≡YY∨Z(Y∨Z)∧X(X≡Y)∨((Y∨Z)∧X)
0001001
0011101
0100100
0110100
1000000
1010111
1101111
1111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0100
0110
1000
1011
1101
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0100
0110
1000
1011
1101
1111
Fскнф = (X∨¬Y∨Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0100
0110
1000
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Y ⊕ X∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы