Таблица истинности для функции X1∨X2∨X3∧X1∨X2∨¬X3∧X1∨¬X2∨X3∧X1∨¬X2∨¬X3∧¬X1∨X2∨¬X3:
Промежуточные таблицы истинности:¬X3:
¬X2:
¬X1:
X3∧X1:
(¬X3)∧X1:
| X3 | X1 | ¬X3 | (¬X3)∧X1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |
(¬X3)∧(¬X1):
| X3 | X1 | ¬X3 | ¬X1 | (¬X3)∧(¬X1) |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
X1∨X2:
(X1∨X2)∨(X3∧X1):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
((X1∨X2)∨(X3∧X1))∨X2:
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
(((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
(((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | X3∧X1 | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | X3∧X1 | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) | ¬X2 | ((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
(((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | X3∧X1 | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) | ¬X2 | ((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2) | ¬X3 | ¬X1 | (¬X3)∧(¬X1) | (((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2:
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | X3∧X1 | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) | ¬X2 | ((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2) | ¬X3 | ¬X1 | (¬X3)∧(¬X1) | (((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)) | ((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
(((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2)∨(¬X3):
| X1 | X2 | X3 | X1∨X2 | X3∧X1 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | ¬X3 | (¬X3)∧X1 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ¬X2 | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | X3∧X1 | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) | ¬X2 | ((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2) | ¬X3 | ¬X1 | (¬X3)∧(¬X1) | (((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)) | ((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2 | ¬X3 | (((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2)∨(¬X3) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
Общая таблица истинности:
| X1 | X2 | X3 | ¬X3 | ¬X2 | ¬X1 | X3∧X1 | (¬X3)∧X1 | (¬X3)∧(¬X1) | X1∨X2 | (X1∨X2)∨(X3∧X1) | ((X1∨X2)∨(X3∧X1))∨X2 | (((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1) | ((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2) | (((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1) | ((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2) | (((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)) | ((((((((X1∨X2)∨(X3∧X1))∨X2)∨((¬X3)∧X1))∨(¬X2))∨(X3∧X1))∨(¬X2))∨((¬X3)∧(¬X1)))∨X2 | X1∨X2∨X3∧X1∨X2∨¬X3∧X1∨¬X2∨X3∧X1∨¬X2∨¬X3∧¬X1∨X2∨¬X3 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
| X1 | X2 | X3 | F |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
F
сднф = ¬X1∧¬X2∧¬X3 ∨ ¬X1∧¬X2∧X3 ∨ ¬X1∧X2∧¬X3 ∨ ¬X1∧X2∧X3 ∨ X1∧¬X2∧¬X3 ∨ X1∧¬X2∧X3 ∨ X1∧X2∧¬X3 ∨ X1∧X2∧X3
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
| X1 | X2 | X3 | F |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
В таблице истинности нет набора значений переменных при которых функция ложна!
Построение полинома Жегалкина:
По таблице истинности функции
| X1 | X2 | X3 | Fж |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
000 ⊕ C
100∧X1 ⊕ C
010∧X2 ⊕ C
001∧X3 ⊕ C
110∧X1∧X2 ⊕ C
101∧X1∧X3 ⊕ C
011∧X2∧X3 ⊕ C
111∧X1∧X2∧X3
Так как F
ж(000) = 1, то С
000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(100) = С
000 ⊕ С
100 = 1 => С
100 = 1 ⊕ 1 = 0
F
ж(010) = С
000 ⊕ С
010 = 1 => С
010 = 1 ⊕ 1 = 0
F
ж(001) = С
000 ⊕ С
001 = 1 => С
001 = 1 ⊕ 1 = 0
F
ж(110) = С
000 ⊕ С
100 ⊕ С
010 ⊕ С
110 = 1 => С
110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101) = С
000 ⊕ С
100 ⊕ С
001 ⊕ С
101 = 1 => С
101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011) = С
000 ⊕ С
010 ⊕ С
001 ⊕ С
011 = 1 => С
011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111) = С
000 ⊕ С
100 ⊕ С
010 ⊕ С
001 ⊕ С
110 ⊕ С
101 ⊕ С
011 ⊕ С
111 = 1 => С
111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
F
ж = 1