Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (¬(X1∧X2∧¬X3∨(¬X1∨X2∨X3)∨X2)∧(X1∨X2)∧(X1∧X2∧X3)):
Промежуточные таблицы истинности:¬X1: (¬X1)∨X2: X1 | X2 | ¬X1 | (¬X1)∨X2 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
((¬X1)∨X2)∨X3: X1 | X2 | X3 | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
¬X3: X1∧X2: (X1∧X2)∧(¬X3): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
(((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2: X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | (((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
X1∨X2: (X1∧X2)∧X3: X1 | X2 | X3 | X1∧X2 | (X1∧X2)∧X3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | (((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2 | ¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
(¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | (((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2 | ¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2) | X1∨X2 | (¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
((¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2))∧((X1∧X2)∧X3): X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | (((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2 | ¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2) | X1∨X2 | (¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2) | X1∧X2 | (X1∧X2)∧X3 | ((¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2))∧((X1∧X2)∧X3) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
Общая таблица истинности:X1 | X2 | X3 | ¬X1 | (¬X1)∨X2 | ((¬X1)∨X2)∨X3 | ¬X3 | X1∧X2 | (X1∧X2)∧(¬X3) | ((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3) | (((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2 | X1∨X2 | (X1∧X2)∧X3 | ¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2) | (¬((((X1∧X2)∧(¬X3))∨(((¬X1)∨X2)∨X3))∨X2))∧(X1∨X2) | (¬(X1∧X2∧¬X3∨(¬X1∨X2∨X3)∨X2)∧(X1∨X2)∧(X1∧X2∧X3)) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F скнф = (X1∨X2∨X3) ∧ (X1∨X2∨¬X3) ∧ (X1∨¬X2∨X3) ∧ (X1∨¬X2∨¬X3) ∧ (¬X1∨X2∨X3) ∧ (¬X1∨X2∨¬X3) ∧ (¬X1∨¬X2∨X3) ∧ (¬X1∨¬X2∨¬X3) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X1 | X2 | X3 | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X1 ⊕ C 010∧X2 ⊕ C 001∧X3 ⊕ C 110∧X1∧X2 ⊕ C 101∧X1∧X3 ⊕ C 011∧X2∧X3 ⊕ C 111∧X1∧X2∧X3 Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 0 ⊕ 0 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 0 ⊕ 0 = 0 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 0
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|