Таблица истинности для функции ¬(A∨B≡C)∧(B→C):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

(A∨B)≡C:
ABCA∨B(A∨B)≡C
00001
00100
01010
01111
10010
10111
11010
11111

B→C:
BCB→C
001
011
100
111

¬((A∨B)≡C):
ABCA∨B(A∨B)≡C¬((A∨B)≡C)
000010
001001
010101
011110
100101
101110
110101
111110

(¬((A∨B)≡C))∧(B→C):
ABCA∨B(A∨B)≡C¬((A∨B)≡C)B→C(¬((A∨B)≡C))∧(B→C)
00001010
00100111
01010100
01111010
10010111
10111010
11010100
11111010

Общая таблица истинности:

ABCA∨B(A∨B)≡CB→C¬((A∨B)≡C)¬(A∨B≡C)∧(B→C)
00001100
00100111
01010010
01111100
10010111
10111100
11010010
11111100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1001
1010
1100
1110
Fсднф = ¬A∧¬B∧C ∨ A∧¬B∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1001
1010
1100
1110
Fскнф = (A∨B∨C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0011
0100
0110
1001
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ C ⊕ A∧B ⊕ B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы