Таблица истинности для функции F≡A∧V∧B∧(C∧V∧D)∧V∧C:


Промежуточные таблицы истинности:
C∧V:
CVC∧V
000
010
100
111

(C∧V)∧D:
CVDC∧V(C∧V)∧D
00000
00100
01000
01100
10000
10100
11010
11111

A∧V:
AVA∧V
000
010
100
111

(A∧V)∧B:
AVBA∧V(A∧V)∧B
00000
00100
01000
01100
10000
10100
11010
11111

((A∧V)∧B)∧((C∧V)∧D):
AVBCDA∧V(A∧V)∧BC∧V(C∧V)∧D((A∧V)∧B)∧((C∧V)∧D)
0000000000
0000100000
0001000000
0001100000
0010000000
0010100000
0011000000
0011100000
0100000000
0100100000
0101000100
0101100110
0110000000
0110100000
0111000100
0111100110
1000000000
1000100000
1001000000
1001100000
1010000000
1010100000
1011000000
1011100000
1100010000
1100110000
1101010100
1101110110
1110011000
1110111000
1111011100
1111111111

(((A∧V)∧B)∧((C∧V)∧D))∧V:
AVBCDA∧V(A∧V)∧BC∧V(C∧V)∧D((A∧V)∧B)∧((C∧V)∧D)(((A∧V)∧B)∧((C∧V)∧D))∧V
00000000000
00001000000
00010000000
00011000000
00100000000
00101000000
00110000000
00111000000
01000000000
01001000000
01010001000
01011001100
01100000000
01101000000
01110001000
01111001100
10000000000
10001000000
10010000000
10011000000
10100000000
10101000000
10110000000
10111000000
11000100000
11001100000
11010101000
11011101100
11100110000
11101110000
11110111000
11111111111

((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C:
AVBCDA∧V(A∧V)∧BC∧V(C∧V)∧D((A∧V)∧B)∧((C∧V)∧D)(((A∧V)∧B)∧((C∧V)∧D))∧V((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C
000000000000
000010000000
000100000000
000110000000
001000000000
001010000000
001100000000
001110000000
010000000000
010010000000
010100010000
010110011000
011000000000
011010000000
011100010000
011110011000
100000000000
100010000000
100100000000
100110000000
101000000000
101010000000
101100000000
101110000000
110001000000
110011000000
110101010000
110111011000
111001100000
111011100000
111101110000
111111111111

F≡(((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C):
FAVBCDA∧V(A∧V)∧BC∧V(C∧V)∧D((A∧V)∧B)∧((C∧V)∧D)(((A∧V)∧B)∧((C∧V)∧D))∧V((((A∧V)∧B)∧((C∧V)∧D))∧V)∧CF≡(((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C)
00000000000001
00000100000001
00001000000001
00001100000001
00010000000001
00010100000001
00011000000001
00011100000001
00100000000001
00100100000001
00101000100001
00101100110001
00110000000001
00110100000001
00111000100001
00111100110001
01000000000001
01000100000001
01001000000001
01001100000001
01010000000001
01010100000001
01011000000001
01011100000001
01100010000001
01100110000001
01101010100001
01101110110001
01110011000001
01110111000001
01111011100001
01111111111110
10000000000000
10000100000000
10001000000000
10001100000000
10010000000000
10010100000000
10011000000000
10011100000000
10100000000000
10100100000000
10101000100000
10101100110000
10110000000000
10110100000000
10111000100000
10111100110000
11000000000000
11000100000000
11001000000000
11001100000000
11010000000000
11010100000000
11011000000000
11011100000000
11100010000000
11100110000000
11101010100000
11101110110000
11110011000000
11110111000000
11111011100000
11111111111111

Общая таблица истинности:

FAVBCDC∧V(C∧V)∧DA∧V(A∧V)∧B((A∧V)∧B)∧((C∧V)∧D)(((A∧V)∧B)∧((C∧V)∧D))∧V((((A∧V)∧B)∧((C∧V)∧D))∧V)∧CF≡A∧V∧B∧(C∧V∧D)∧V∧C
00000000000001
00000100000001
00001000000001
00001100000001
00010000000001
00010100000001
00011000000001
00011100000001
00100000000001
00100100000001
00101010000001
00101111000001
00110000000001
00110100000001
00111010000001
00111111000001
01000000000001
01000100000001
01001000000001
01001100000001
01010000000001
01010100000001
01011000000001
01011100000001
01100000100001
01100100100001
01101010100001
01101111100001
01110000110001
01110100110001
01111010110001
01111111111110
10000000000000
10000100000000
10001000000000
10001100000000
10010000000000
10010100000000
10011000000000
10011100000000
10100000000000
10100100000000
10101010000000
10101111000000
10110000000000
10110100000000
10111010000000
10111111000000
11000000000000
11000100000000
11001000000000
11001100000000
11010000000000
11010100000000
11011000000000
11011100000000
11100000100000
11100100100000
11101010100000
11101111100000
11110000110000
11110100110000
11111010110000
11111111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FAVBCDF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111111
Fсднф = ¬F∧¬A∧¬V∧¬B∧¬C∧¬D ∨ ¬F∧¬A∧¬V∧¬B∧¬C∧D ∨ ¬F∧¬A∧¬V∧¬B∧C∧¬D ∨ ¬F∧¬A∧¬V∧¬B∧C∧D ∨ ¬F∧¬A∧¬V∧B∧¬C∧¬D ∨ ¬F∧¬A∧¬V∧B∧¬C∧D ∨ ¬F∧¬A∧¬V∧B∧C∧¬D ∨ ¬F∧¬A∧¬V∧B∧C∧D ∨ ¬F∧¬A∧V∧¬B∧¬C∧¬D ∨ ¬F∧¬A∧V∧¬B∧¬C∧D ∨ ¬F∧¬A∧V∧¬B∧C∧¬D ∨ ¬F∧¬A∧V∧¬B∧C∧D ∨ ¬F∧¬A∧V∧B∧¬C∧¬D ∨ ¬F∧¬A∧V∧B∧¬C∧D ∨ ¬F∧¬A∧V∧B∧C∧¬D ∨ ¬F∧¬A∧V∧B∧C∧D ∨ ¬F∧A∧¬V∧¬B∧¬C∧¬D ∨ ¬F∧A∧¬V∧¬B∧¬C∧D ∨ ¬F∧A∧¬V∧¬B∧C∧¬D ∨ ¬F∧A∧¬V∧¬B∧C∧D ∨ ¬F∧A∧¬V∧B∧¬C∧¬D ∨ ¬F∧A∧¬V∧B∧¬C∧D ∨ ¬F∧A∧¬V∧B∧C∧¬D ∨ ¬F∧A∧¬V∧B∧C∧D ∨ ¬F∧A∧V∧¬B∧¬C∧¬D ∨ ¬F∧A∧V∧¬B∧¬C∧D ∨ ¬F∧A∧V∧¬B∧C∧¬D ∨ ¬F∧A∧V∧¬B∧C∧D ∨ ¬F∧A∧V∧B∧¬C∧¬D ∨ ¬F∧A∧V∧B∧¬C∧D ∨ ¬F∧A∧V∧B∧C∧¬D ∨ F∧A∧V∧B∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FAVBCDF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111111
Fскнф = (F∨¬A∨¬V∨¬B∨¬C∨¬D) ∧ (¬F∨A∨V∨B∨C∨D) ∧ (¬F∨A∨V∨B∨C∨¬D) ∧ (¬F∨A∨V∨B∨¬C∨D) ∧ (¬F∨A∨V∨B∨¬C∨¬D) ∧ (¬F∨A∨V∨¬B∨C∨D) ∧ (¬F∨A∨V∨¬B∨C∨¬D) ∧ (¬F∨A∨V∨¬B∨¬C∨D) ∧ (¬F∨A∨V∨¬B∨¬C∨¬D) ∧ (¬F∨A∨¬V∨B∨C∨D) ∧ (¬F∨A∨¬V∨B∨C∨¬D) ∧ (¬F∨A∨¬V∨B∨¬C∨D) ∧ (¬F∨A∨¬V∨B∨¬C∨¬D) ∧ (¬F∨A∨¬V∨¬B∨C∨D) ∧ (¬F∨A∨¬V∨¬B∨C∨¬D) ∧ (¬F∨A∨¬V∨¬B∨¬C∨D) ∧ (¬F∨A∨¬V∨¬B∨¬C∨¬D) ∧ (¬F∨¬A∨V∨B∨C∨D) ∧ (¬F∨¬A∨V∨B∨C∨¬D) ∧ (¬F∨¬A∨V∨B∨¬C∨D) ∧ (¬F∨¬A∨V∨B∨¬C∨¬D) ∧ (¬F∨¬A∨V∨¬B∨C∨D) ∧ (¬F∨¬A∨V∨¬B∨C∨¬D) ∧ (¬F∨¬A∨V∨¬B∨¬C∨D) ∧ (¬F∨¬A∨V∨¬B∨¬C∨¬D) ∧ (¬F∨¬A∨¬V∨B∨C∨D) ∧ (¬F∨¬A∨¬V∨B∨C∨¬D) ∧ (¬F∨¬A∨¬V∨B∨¬C∨D) ∧ (¬F∨¬A∨¬V∨B∨¬C∨¬D) ∧ (¬F∨¬A∨¬V∨¬B∨C∨D) ∧ (¬F∨¬A∨¬V∨¬B∨C∨¬D) ∧ (¬F∨¬A∨¬V∨¬B∨¬C∨D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FAVBCDFж
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111111

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧F ⊕ C010000∧A ⊕ C001000∧V ⊕ C000100∧B ⊕ C000010∧C ⊕ C000001∧D ⊕ C110000∧F∧A ⊕ C101000∧F∧V ⊕ C100100∧F∧B ⊕ C100010∧F∧C ⊕ C100001∧F∧D ⊕ C011000∧A∧V ⊕ C010100∧A∧B ⊕ C010010∧A∧C ⊕ C010001∧A∧D ⊕ C001100∧V∧B ⊕ C001010∧V∧C ⊕ C001001∧V∧D ⊕ C000110∧B∧C ⊕ C000101∧B∧D ⊕ C000011∧C∧D ⊕ C111000∧F∧A∧V ⊕ C110100∧F∧A∧B ⊕ C110010∧F∧A∧C ⊕ C110001∧F∧A∧D ⊕ C101100∧F∧V∧B ⊕ C101010∧F∧V∧C ⊕ C101001∧F∧V∧D ⊕ C100110∧F∧B∧C ⊕ C100101∧F∧B∧D ⊕ C100011∧F∧C∧D ⊕ C011100∧A∧V∧B ⊕ C011010∧A∧V∧C ⊕ C011001∧A∧V∧D ⊕ C010110∧A∧B∧C ⊕ C010101∧A∧B∧D ⊕ C010011∧A∧C∧D ⊕ C001110∧V∧B∧C ⊕ C001101∧V∧B∧D ⊕ C001011∧V∧C∧D ⊕ C000111∧B∧C∧D ⊕ C111100∧F∧A∧V∧B ⊕ C111010∧F∧A∧V∧C ⊕ C111001∧F∧A∧V∧D ⊕ C110110∧F∧A∧B∧C ⊕ C110101∧F∧A∧B∧D ⊕ C110011∧F∧A∧C∧D ⊕ C101110∧F∧V∧B∧C ⊕ C101101∧F∧V∧B∧D ⊕ C101011∧F∧V∧C∧D ⊕ C100111∧F∧B∧C∧D ⊕ C011110∧A∧V∧B∧C ⊕ C011101∧A∧V∧B∧D ⊕ C011011∧A∧V∧C∧D ⊕ C010111∧A∧B∧C∧D ⊕ C001111∧V∧B∧C∧D ⊕ C111110∧F∧A∧V∧B∧C ⊕ C111101∧F∧A∧V∧B∧D ⊕ C111011∧F∧A∧V∧C∧D ⊕ C110111∧F∧A∧B∧C∧D ⊕ C101111∧F∧V∧B∧C∧D ⊕ C011111∧A∧V∧B∧C∧D ⊕ C111111∧F∧A∧V∧B∧C∧D

Так как Fж(000000) = 1, то С000000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 0 => С100000 = 1 ⊕ 0 = 1
Fж(010000) = С000000 ⊕ С010000 = 1 => С010000 = 1 ⊕ 1 = 0
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 1 ⊕ 1 = 0
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 1 ⊕ 1 = 0
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 1 ⊕ 1 = 0
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 1 ⊕ 1 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 0 => С110000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 0 => С101000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 0 => С100100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 0 => С100010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 0 => С100001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 1 => С011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 1 => С010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 1 => С010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 1 => С010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 1 => С001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 1 => С001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 1 => С001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 1 => С000110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 1 => С000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 1 => С000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 0 => С111000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 0 => С110100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 0 => С110010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 0 => С110001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 0 => С101100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 0 => С101010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 0 => С101001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 0 => С100110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 0 => С100101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 0 => С100011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 1 => С010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 1 => С010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 1 => С001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 0 => С111100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 0 => С111010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 0 => С111001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 0 => С110110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 0 => С110101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 0 => С110011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 0 => С101110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 0 => С101101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 0 => С101011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 0 => С100111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 1 => С011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 1 => С010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 1 => С001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 0 => С111110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 0 => С111101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 0 => С111011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 0 => С110111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 0 => С101111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 0 => С011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 1 => С111111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F ⊕ A∧V∧B∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы