Промежуточные таблицы истинности:C∧V:
(C∧V)∧D:
C | V | D | C∧V | (C∧V)∧D |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
A∧V:
(A∧V)∧B:
A | V | B | A∧V | (A∧V)∧B |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
((A∧V)∧B)∧((C∧V)∧D):
A | V | B | C | D | A∧V | (A∧V)∧B | C∧V | (C∧V)∧D | ((A∧V)∧B)∧((C∧V)∧D) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
(((A∧V)∧B)∧((C∧V)∧D))∧V:
A | V | B | C | D | A∧V | (A∧V)∧B | C∧V | (C∧V)∧D | ((A∧V)∧B)∧((C∧V)∧D) | (((A∧V)∧B)∧((C∧V)∧D))∧V |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C:
A | V | B | C | D | A∧V | (A∧V)∧B | C∧V | (C∧V)∧D | ((A∧V)∧B)∧((C∧V)∧D) | (((A∧V)∧B)∧((C∧V)∧D))∧V | ((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F≡(((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C):
F | A | V | B | C | D | A∧V | (A∧V)∧B | C∧V | (C∧V)∧D | ((A∧V)∧B)∧((C∧V)∧D) | (((A∧V)∧B)∧((C∧V)∧D))∧V | ((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C | F≡(((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:
F | A | V | B | C | D | C∧V | (C∧V)∧D | A∧V | (A∧V)∧B | ((A∧V)∧B)∧((C∧V)∧D) | (((A∧V)∧B)∧((C∧V)∧D))∧V | ((((A∧V)∧B)∧((C∧V)∧D))∧V)∧C | F≡A∧V∧B∧(C∧V∧D)∧V∧C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
F | A | V | B | C | D | F |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
F
сднф = ¬F∧¬A∧¬V∧¬B∧¬C∧¬D ∨ ¬F∧¬A∧¬V∧¬B∧¬C∧D ∨ ¬F∧¬A∧¬V∧¬B∧C∧¬D ∨ ¬F∧¬A∧¬V∧¬B∧C∧D ∨ ¬F∧¬A∧¬V∧B∧¬C∧¬D ∨ ¬F∧¬A∧¬V∧B∧¬C∧D ∨ ¬F∧¬A∧¬V∧B∧C∧¬D ∨ ¬F∧¬A∧¬V∧B∧C∧D ∨ ¬F∧¬A∧V∧¬B∧¬C∧¬D ∨ ¬F∧¬A∧V∧¬B∧¬C∧D ∨ ¬F∧¬A∧V∧¬B∧C∧¬D ∨ ¬F∧¬A∧V∧¬B∧C∧D ∨ ¬F∧¬A∧V∧B∧¬C∧¬D ∨ ¬F∧¬A∧V∧B∧¬C∧D ∨ ¬F∧¬A∧V∧B∧C∧¬D ∨ ¬F∧¬A∧V∧B∧C∧D ∨ ¬F∧A∧¬V∧¬B∧¬C∧¬D ∨ ¬F∧A∧¬V∧¬B∧¬C∧D ∨ ¬F∧A∧¬V∧¬B∧C∧¬D ∨ ¬F∧A∧¬V∧¬B∧C∧D ∨ ¬F∧A∧¬V∧B∧¬C∧¬D ∨ ¬F∧A∧¬V∧B∧¬C∧D ∨ ¬F∧A∧¬V∧B∧C∧¬D ∨ ¬F∧A∧¬V∧B∧C∧D ∨ ¬F∧A∧V∧¬B∧¬C∧¬D ∨ ¬F∧A∧V∧¬B∧¬C∧D ∨ ¬F∧A∧V∧¬B∧C∧¬D ∨ ¬F∧A∧V∧¬B∧C∧D ∨ ¬F∧A∧V∧B∧¬C∧¬D ∨ ¬F∧A∧V∧B∧¬C∧D ∨ ¬F∧A∧V∧B∧C∧¬D ∨ F∧A∧V∧B∧C∧D
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
F | A | V | B | C | D | F |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
F
скнф = (F∨¬A∨¬V∨¬B∨¬C∨¬D) ∧ (¬F∨A∨V∨B∨C∨D) ∧ (¬F∨A∨V∨B∨C∨¬D) ∧ (¬F∨A∨V∨B∨¬C∨D) ∧ (¬F∨A∨V∨B∨¬C∨¬D) ∧ (¬F∨A∨V∨¬B∨C∨D) ∧ (¬F∨A∨V∨¬B∨C∨¬D) ∧ (¬F∨A∨V∨¬B∨¬C∨D) ∧ (¬F∨A∨V∨¬B∨¬C∨¬D) ∧ (¬F∨A∨¬V∨B∨C∨D) ∧ (¬F∨A∨¬V∨B∨C∨¬D) ∧ (¬F∨A∨¬V∨B∨¬C∨D) ∧ (¬F∨A∨¬V∨B∨¬C∨¬D) ∧ (¬F∨A∨¬V∨¬B∨C∨D) ∧ (¬F∨A∨¬V∨¬B∨C∨¬D) ∧ (¬F∨A∨¬V∨¬B∨¬C∨D) ∧ (¬F∨A∨¬V∨¬B∨¬C∨¬D) ∧ (¬F∨¬A∨V∨B∨C∨D) ∧ (¬F∨¬A∨V∨B∨C∨¬D) ∧ (¬F∨¬A∨V∨B∨¬C∨D) ∧ (¬F∨¬A∨V∨B∨¬C∨¬D) ∧ (¬F∨¬A∨V∨¬B∨C∨D) ∧ (¬F∨¬A∨V∨¬B∨C∨¬D) ∧ (¬F∨¬A∨V∨¬B∨¬C∨D) ∧ (¬F∨¬A∨V∨¬B∨¬C∨¬D) ∧ (¬F∨¬A∨¬V∨B∨C∨D) ∧ (¬F∨¬A∨¬V∨B∨C∨¬D) ∧ (¬F∨¬A∨¬V∨B∨¬C∨D) ∧ (¬F∨¬A∨¬V∨B∨¬C∨¬D) ∧ (¬F∨¬A∨¬V∨¬B∨C∨D) ∧ (¬F∨¬A∨¬V∨¬B∨C∨¬D) ∧ (¬F∨¬A∨¬V∨¬B∨¬C∨D)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
F | A | V | B | C | D | Fж |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
000000 ⊕ C
100000∧F ⊕ C
010000∧A ⊕ C
001000∧V ⊕ C
000100∧B ⊕ C
000010∧C ⊕ C
000001∧D ⊕ C
110000∧F∧A ⊕ C
101000∧F∧V ⊕ C
100100∧F∧B ⊕ C
100010∧F∧C ⊕ C
100001∧F∧D ⊕ C
011000∧A∧V ⊕ C
010100∧A∧B ⊕ C
010010∧A∧C ⊕ C
010001∧A∧D ⊕ C
001100∧V∧B ⊕ C
001010∧V∧C ⊕ C
001001∧V∧D ⊕ C
000110∧B∧C ⊕ C
000101∧B∧D ⊕ C
000011∧C∧D ⊕ C
111000∧F∧A∧V ⊕ C
110100∧F∧A∧B ⊕ C
110010∧F∧A∧C ⊕ C
110001∧F∧A∧D ⊕ C
101100∧F∧V∧B ⊕ C
101010∧F∧V∧C ⊕ C
101001∧F∧V∧D ⊕ C
100110∧F∧B∧C ⊕ C
100101∧F∧B∧D ⊕ C
100011∧F∧C∧D ⊕ C
011100∧A∧V∧B ⊕ C
011010∧A∧V∧C ⊕ C
011001∧A∧V∧D ⊕ C
010110∧A∧B∧C ⊕ C
010101∧A∧B∧D ⊕ C
010011∧A∧C∧D ⊕ C
001110∧V∧B∧C ⊕ C
001101∧V∧B∧D ⊕ C
001011∧V∧C∧D ⊕ C
000111∧B∧C∧D ⊕ C
111100∧F∧A∧V∧B ⊕ C
111010∧F∧A∧V∧C ⊕ C
111001∧F∧A∧V∧D ⊕ C
110110∧F∧A∧B∧C ⊕ C
110101∧F∧A∧B∧D ⊕ C
110011∧F∧A∧C∧D ⊕ C
101110∧F∧V∧B∧C ⊕ C
101101∧F∧V∧B∧D ⊕ C
101011∧F∧V∧C∧D ⊕ C
100111∧F∧B∧C∧D ⊕ C
011110∧A∧V∧B∧C ⊕ C
011101∧A∧V∧B∧D ⊕ C
011011∧A∧V∧C∧D ⊕ C
010111∧A∧B∧C∧D ⊕ C
001111∧V∧B∧C∧D ⊕ C
111110∧F∧A∧V∧B∧C ⊕ C
111101∧F∧A∧V∧B∧D ⊕ C
111011∧F∧A∧V∧C∧D ⊕ C
110111∧F∧A∧B∧C∧D ⊕ C
101111∧F∧V∧B∧C∧D ⊕ C
011111∧A∧V∧B∧C∧D ⊕ C
111111∧F∧A∧V∧B∧C∧D
Так как F
ж(000000) = 1, то С
000000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(100000) = С
000000 ⊕ С
100000 = 0 => С
100000 = 1 ⊕ 0 = 1
F
ж(010000) = С
000000 ⊕ С
010000 = 1 => С
010000 = 1 ⊕ 1 = 0
F
ж(001000) = С
000000 ⊕ С
001000 = 1 => С
001000 = 1 ⊕ 1 = 0
F
ж(000100) = С
000000 ⊕ С
000100 = 1 => С
000100 = 1 ⊕ 1 = 0
F
ж(000010) = С
000000 ⊕ С
000010 = 1 => С
000010 = 1 ⊕ 1 = 0
F
ж(000001) = С
000000 ⊕ С
000001 = 1 => С
000001 = 1 ⊕ 1 = 0
F
ж(110000) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
110000 = 0 => С
110000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(101000) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
101000 = 0 => С
101000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(100100) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
100100 = 0 => С
100100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(100010) = С
000000 ⊕ С
100000 ⊕ С
000010 ⊕ С
100010 = 0 => С
100010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(100001) = С
000000 ⊕ С
100000 ⊕ С
000001 ⊕ С
100001 = 0 => С
100001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(011000) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
011000 = 1 => С
011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010100) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
010100 = 1 => С
010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010010) = С
000000 ⊕ С
010000 ⊕ С
000010 ⊕ С
010010 = 1 => С
010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010001) = С
000000 ⊕ С
010000 ⊕ С
000001 ⊕ С
010001 = 1 => С
010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001100) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
001100 = 1 => С
001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001010) = С
000000 ⊕ С
001000 ⊕ С
000010 ⊕ С
001010 = 1 => С
001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001001) = С
000000 ⊕ С
001000 ⊕ С
000001 ⊕ С
001001 = 1 => С
001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000110) = С
000000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000110 = 1 => С
000110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000101) = С
000000 ⊕ С
000100 ⊕ С
000001 ⊕ С
000101 = 1 => С
000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000011) = С
000000 ⊕ С
000010 ⊕ С
000001 ⊕ С
000011 = 1 => С
000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111000) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
110000 ⊕ С
101000 ⊕ С
011000 ⊕ С
111000 = 0 => С
111000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110100) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
110000 ⊕ С
100100 ⊕ С
010100 ⊕ С
110100 = 0 => С
110100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110010) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000010 ⊕ С
110000 ⊕ С
100010 ⊕ С
010010 ⊕ С
110010 = 0 => С
110010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110001) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000001 ⊕ С
110000 ⊕ С
100001 ⊕ С
010001 ⊕ С
110001 = 0 => С
110001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101100) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
101000 ⊕ С
100100 ⊕ С
001100 ⊕ С
101100 = 0 => С
101100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101010) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000010 ⊕ С
101000 ⊕ С
100010 ⊕ С
001010 ⊕ С
101010 = 0 => С
101010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101001) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000001 ⊕ С
101000 ⊕ С
100001 ⊕ С
001001 ⊕ С
101001 = 0 => С
101001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(100110) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000010 ⊕ С
100100 ⊕ С
100010 ⊕ С
000110 ⊕ С
100110 = 0 => С
100110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(100101) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000001 ⊕ С
100100 ⊕ С
100001 ⊕ С
000101 ⊕ С
100101 = 0 => С
100101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(100011) = С
000000 ⊕ С
100000 ⊕ С
000010 ⊕ С
000001 ⊕ С
100010 ⊕ С
100001 ⊕ С
000011 ⊕ С
100011 = 0 => С
100011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(011100) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
011000 ⊕ С
010100 ⊕ С
001100 ⊕ С
011100 = 1 => С
011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011010) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
011000 ⊕ С
010010 ⊕ С
001010 ⊕ С
011010 = 1 => С
011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011001) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000001 ⊕ С
011000 ⊕ С
010001 ⊕ С
001001 ⊕ С
011001 = 1 => С
011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010110) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
010100 ⊕ С
010010 ⊕ С
000110 ⊕ С
010110 = 1 => С
010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010101) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000001 ⊕ С
010100 ⊕ С
010001 ⊕ С
000101 ⊕ С
010101 = 1 => С
010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010011) = С
000000 ⊕ С
010000 ⊕ С
000010 ⊕ С
000001 ⊕ С
010010 ⊕ С
010001 ⊕ С
000011 ⊕ С
010011 = 1 => С
010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001110) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
001110 = 1 => С
001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001101) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
001101 = 1 => С
001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001011) = С
000000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
001011 = 1 => С
001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000111) = С
000000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
000111 = 1 => С
000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111100) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
011000 ⊕ С
010100 ⊕ С
001100 ⊕ С
111000 ⊕ С
110100 ⊕ С
101100 ⊕ С
011100 ⊕ С
111100 = 0 => С
111100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(111010) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
110000 ⊕ С
101000 ⊕ С
100010 ⊕ С
011000 ⊕ С
010010 ⊕ С
001010 ⊕ С
111000 ⊕ С
110010 ⊕ С
101010 ⊕ С
011010 ⊕ С
111010 = 0 => С
111010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(111001) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100001 ⊕ С
011000 ⊕ С
010001 ⊕ С
001001 ⊕ С
111000 ⊕ С
110001 ⊕ С
101001 ⊕ С
011001 ⊕ С
111001 = 0 => С
111001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110110) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
110000 ⊕ С
100100 ⊕ С
100010 ⊕ С
010100 ⊕ С
010010 ⊕ С
000110 ⊕ С
110100 ⊕ С
110010 ⊕ С
100110 ⊕ С
010110 ⊕ С
110110 = 0 => С
110110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110101) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000001 ⊕ С
110000 ⊕ С
100100 ⊕ С
100001 ⊕ С
010100 ⊕ С
010001 ⊕ С
000101 ⊕ С
110100 ⊕ С
110001 ⊕ С
100101 ⊕ С
010101 ⊕ С
110101 = 0 => С
110101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110011) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
100010 ⊕ С
100001 ⊕ С
010010 ⊕ С
010001 ⊕ С
000011 ⊕ С
110010 ⊕ С
110001 ⊕ С
100011 ⊕ С
010011 ⊕ С
110011 = 0 => С
110011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101110) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
101100 ⊕ С
101010 ⊕ С
100110 ⊕ С
001110 ⊕ С
101110 = 0 => С
101110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101101) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
101000 ⊕ С
100100 ⊕ С
100001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
101100 ⊕ С
101001 ⊕ С
100101 ⊕ С
001101 ⊕ С
101101 = 0 => С
101101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101011) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
101000 ⊕ С
100010 ⊕ С
100001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
101010 ⊕ С
101001 ⊕ С
100011 ⊕ С
001011 ⊕ С
101011 = 0 => С
101011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(100111) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
000111 ⊕ С
100111 = 0 => С
100111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(011110) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
011100 ⊕ С
011010 ⊕ С
010110 ⊕ С
001110 ⊕ С
011110 = 1 => С
011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011101) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
011100 ⊕ С
011001 ⊕ С
010101 ⊕ С
001101 ⊕ С
011101 = 1 => С
011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011011) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
011000 ⊕ С
010010 ⊕ С
010001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
011010 ⊕ С
011001 ⊕ С
010011 ⊕ С
001011 ⊕ С
011011 = 1 => С
011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010111) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
000111 ⊕ С
010111 = 1 => С
010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001111) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
001111 = 1 => С
001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111110) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
111000 ⊕ С
110100 ⊕ С
110010 ⊕ С
101100 ⊕ С
101010 ⊕ С
100110 ⊕ С
011100 ⊕ С
011010 ⊕ С
010110 ⊕ С
001110 ⊕ С
111100 ⊕ С
111010 ⊕ С
110110 ⊕ С
101110 ⊕ С
011110 ⊕ С
111110 = 0 => С
111110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(111101) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
111000 ⊕ С
110100 ⊕ С
110001 ⊕ С
101100 ⊕ С
101001 ⊕ С
100101 ⊕ С
011100 ⊕ С
011001 ⊕ С
010101 ⊕ С
001101 ⊕ С
111100 ⊕ С
111001 ⊕ С
110101 ⊕ С
101101 ⊕ С
011101 ⊕ С
111101 = 0 => С
111101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(111011) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100010 ⊕ С
100001 ⊕ С
011000 ⊕ С
010010 ⊕ С
010001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
111000 ⊕ С
110010 ⊕ С
110001 ⊕ С
101010 ⊕ С
101001 ⊕ С
100011 ⊕ С
011010 ⊕ С
011001 ⊕ С
010011 ⊕ С
001011 ⊕ С
111010 ⊕ С
111001 ⊕ С
110011 ⊕ С
101011 ⊕ С
011011 ⊕ С
111011 = 0 => С
111011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(110111) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
110100 ⊕ С
110010 ⊕ С
110001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
000111 ⊕ С
110110 ⊕ С
110101 ⊕ С
110011 ⊕ С
100111 ⊕ С
010111 ⊕ С
110111 = 0 => С
110111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(101111) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
101100 ⊕ С
101010 ⊕ С
101001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
101110 ⊕ С
101101 ⊕ С
101011 ⊕ С
100111 ⊕ С
001111 ⊕ С
101111 = 0 => С
101111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(011111) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
011100 ⊕ С
011010 ⊕ С
011001 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
011110 ⊕ С
011101 ⊕ С
011011 ⊕ С
010111 ⊕ С
001111 ⊕ С
011111 = 0 => С
011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
F
ж(111111) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
111000 ⊕ С
110100 ⊕ С
110010 ⊕ С
110001 ⊕ С
101100 ⊕ С
101010 ⊕ С
101001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
011100 ⊕ С
011010 ⊕ С
011001 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
111100 ⊕ С
111010 ⊕ С
111001 ⊕ С
110110 ⊕ С
110101 ⊕ С
110011 ⊕ С
101110 ⊕ С
101101 ⊕ С
101011 ⊕ С
100111 ⊕ С
011110 ⊕ С
011101 ⊕ С
011011 ⊕ С
010111 ⊕ С
001111 ⊕ С
111110 ⊕ С
111101 ⊕ С
111011 ⊕ С
110111 ⊕ С
101111 ⊕ С
011111 ⊕ С
111111 = 1 => С
111111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
F
ж = 1 ⊕ F ⊕ A∧V∧B∧C∧D
Логическая схема, соответствующая полиному Жегалкина: