Таблица истинности для функции ¬(A∨D∨C∨B):


Промежуточные таблицы истинности:
A∨D:
ADA∨D
000
011
101
111

(A∨D)∨C:
ADCA∨D(A∨D)∨C
00000
00101
01011
01111
10011
10111
11011
11111

((A∨D)∨C)∨B:
ADCBA∨D(A∨D)∨C((A∨D)∨C)∨B
0000000
0001001
0010011
0011011
0100111
0101111
0110111
0111111
1000111
1001111
1010111
1011111
1100111
1101111
1110111
1111111

¬(((A∨D)∨C)∨B):
ADCBA∨D(A∨D)∨C((A∨D)∨C)∨B¬(((A∨D)∨C)∨B)
00000001
00010010
00100110
00110110
01001110
01011110
01101110
01111110
10001110
10011110
10101110
10111110
11001110
11011110
11101110
11111110

Общая таблица истинности:

ADCBA∨D(A∨D)∨C((A∨D)∨C)∨B¬(A∨D∨C∨B)
00000001
00010010
00100110
00110110
01001110
01011110
01101110
01111110
10001110
10011110
10101110
10111110
11001110
11011110
11101110
11111110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ADCBF
00001
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110
Fсднф = ¬A∧¬D∧¬C∧¬B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ADCBF
00001
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110
Fскнф = (A∨D∨C∨¬B) ∧ (A∨D∨¬C∨B) ∧ (A∨D∨¬C∨¬B) ∧ (A∨¬D∨C∨B) ∧ (A∨¬D∨C∨¬B) ∧ (A∨¬D∨¬C∨B) ∧ (A∨¬D∨¬C∨¬B) ∧ (¬A∨D∨C∨B) ∧ (¬A∨D∨C∨¬B) ∧ (¬A∨D∨¬C∨B) ∧ (¬A∨D∨¬C∨¬B) ∧ (¬A∨¬D∨C∨B) ∧ (¬A∨¬D∨C∨¬B) ∧ (¬A∨¬D∨¬C∨B) ∧ (¬A∨¬D∨¬C∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ADCBFж
00001
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧D ⊕ C0010∧C ⊕ C0001∧B ⊕ C1100∧A∧D ⊕ C1010∧A∧C ⊕ C1001∧A∧B ⊕ C0110∧D∧C ⊕ C0101∧D∧B ⊕ C0011∧C∧B ⊕ C1110∧A∧D∧C ⊕ C1101∧A∧D∧B ⊕ C1011∧A∧C∧B ⊕ C0111∧D∧C∧B ⊕ C1111∧A∧D∧C∧B

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 1 ⊕ 0 = 1
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 1 ⊕ 0 = 1
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ D ⊕ C ⊕ B ⊕ A∧D ⊕ A∧C ⊕ A∧B ⊕ D∧C ⊕ D∧B ⊕ C∧B ⊕ A∧D∧C ⊕ A∧D∧B ⊕ A∧C∧B ⊕ D∧C∧B ⊕ A∧D∧C∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы