Таблица истинности для функции F∧N∨1≡F∧N⊕X1∨X2∧F0≡0:


Промежуточные таблицы истинности:
F∧N:
FNF∧N
000
010
100
111

X2∧F0:
X2F0X2∧F0
000
010
100
111

(F∧N)∨1:
FNF∧N(F∧N)∨1
0001
0101
1001
1111

X1∨(X2∧F0):
X1X2F0X2∧F0X1∨(X2∧F0)
00000
00100
01000
01111
10001
10101
11001
11111

(F∧N)⊕(X1∨(X2∧F0)):
FNX1X2F0F∧NX2∧F0X1∨(X2∧F0)(F∧N)⊕(X1∨(X2∧F0))
000000000
000010000
000100000
000110111
001000011
001010011
001100011
001110111
010000000
010010000
010100000
010110111
011000011
011010011
011100011
011110111
100000000
100010000
100100000
100110111
101000011
101010011
101100011
101110111
110001001
110011001
110101001
110111110
111001010
111011010
111101010
111111110

((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0))):
FNX1X2F0F∧N(F∧N)∨1F∧NX2∧F0X1∨(X2∧F0)(F∧N)⊕(X1∨(X2∧F0))((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0)))
000000100000
000010100000
000100100000
000110101111
001000100111
001010100111
001100100111
001110101111
010000100000
010010100000
010100100000
010110101111
011000100111
011010100111
011100100111
011110101111
100000100000
100010100000
100100100000
100110101111
101000100111
101010100111
101100100111
101110101111
110001110011
110011110011
110101110011
110111111100
111001110100
111011110100
111101110100
111111111100

(((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0))))≡0:
FNX1X2F0F∧N(F∧N)∨1F∧NX2∧F0X1∨(X2∧F0)(F∧N)⊕(X1∨(X2∧F0))((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0)))(((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0))))≡0
0000001000001
0000101000001
0001001000001
0001101011110
0010001001110
0010101001110
0011001001110
0011101011110
0100001000001
0100101000001
0101001000001
0101101011110
0110001001110
0110101001110
0111001001110
0111101011110
1000001000001
1000101000001
1001001000001
1001101011110
1010001001110
1010101001110
1011001001110
1011101011110
1100011100110
1100111100110
1101011100110
1101111111001
1110011101001
1110111101001
1111011101001
1111111111001

Общая таблица истинности:

FNX1X2F0F∧NX2∧F0(F∧N)∨1X1∨(X2∧F0)(F∧N)⊕(X1∨(X2∧F0))((F∧N)∨1)≡((F∧N)⊕(X1∨(X2∧F0)))F∧N∨1≡F∧N⊕X1∨X2∧F0≡0
000000010001
000010010001
000100010001
000110111110
001000011110
001010011110
001100011110
001110111110
010000010001
010010010001
010100010001
010110111110
011000011110
011010011110
011100011110
011110111110
100000010001
100010010001
100100010001
100110111110
101000011110
101010011110
101100011110
101110111110
110001010110
110011010110
110101010110
110111111001
111001011001
111011011001
111101011001
111111111001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FNX1X2F0F
000001
000011
000101
000110
001000
001010
001100
001110
010001
010011
010101
010110
011000
011010
011100
011110
100001
100011
100101
100110
101000
101010
101100
101110
110000
110010
110100
110111
111001
111011
111101
111111
Fсднф = ¬F∧¬N∧¬X1∧¬X2∧¬F0 ∨ ¬F∧¬N∧¬X1∧¬X2∧F0 ∨ ¬F∧¬N∧¬X1∧X2∧¬F0 ∨ ¬F∧N∧¬X1∧¬X2∧¬F0 ∨ ¬F∧N∧¬X1∧¬X2∧F0 ∨ ¬F∧N∧¬X1∧X2∧¬F0 ∨ F∧¬N∧¬X1∧¬X2∧¬F0 ∨ F∧¬N∧¬X1∧¬X2∧F0 ∨ F∧¬N∧¬X1∧X2∧¬F0 ∨ F∧N∧¬X1∧X2∧F0 ∨ F∧N∧X1∧¬X2∧¬F0 ∨ F∧N∧X1∧¬X2∧F0 ∨ F∧N∧X1∧X2∧¬F0 ∨ F∧N∧X1∧X2∧F0
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FNX1X2F0F
000001
000011
000101
000110
001000
001010
001100
001110
010001
010011
010101
010110
011000
011010
011100
011110
100001
100011
100101
100110
101000
101010
101100
101110
110000
110010
110100
110111
111001
111011
111101
111111
Fскнф = (F∨N∨X1∨¬X2∨¬F0) ∧ (F∨N∨¬X1∨X2∨F0) ∧ (F∨N∨¬X1∨X2∨¬F0) ∧ (F∨N∨¬X1∨¬X2∨F0) ∧ (F∨N∨¬X1∨¬X2∨¬F0) ∧ (F∨¬N∨X1∨¬X2∨¬F0) ∧ (F∨¬N∨¬X1∨X2∨F0) ∧ (F∨¬N∨¬X1∨X2∨¬F0) ∧ (F∨¬N∨¬X1∨¬X2∨F0) ∧ (F∨¬N∨¬X1∨¬X2∨¬F0) ∧ (¬F∨N∨X1∨¬X2∨¬F0) ∧ (¬F∨N∨¬X1∨X2∨F0) ∧ (¬F∨N∨¬X1∨X2∨¬F0) ∧ (¬F∨N∨¬X1∨¬X2∨F0) ∧ (¬F∨N∨¬X1∨¬X2∨¬F0) ∧ (¬F∨¬N∨X1∨X2∨F0) ∧ (¬F∨¬N∨X1∨X2∨¬F0) ∧ (¬F∨¬N∨X1∨¬X2∨F0)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FNX1X2F0Fж
000001
000011
000101
000110
001000
001010
001100
001110
010001
010011
010101
010110
011000
011010
011100
011110
100001
100011
100101
100110
101000
101010
101100
101110
110000
110010
110100
110111
111001
111011
111101
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧N ⊕ C00100∧X1 ⊕ C00010∧X2 ⊕ C00001∧F0 ⊕ C11000∧F∧N ⊕ C10100∧F∧X1 ⊕ C10010∧F∧X2 ⊕ C10001∧F∧F0 ⊕ C01100∧N∧X1 ⊕ C01010∧N∧X2 ⊕ C01001∧N∧F0 ⊕ C00110∧X1∧X2 ⊕ C00101∧X1∧F0 ⊕ C00011∧X2∧F0 ⊕ C11100∧F∧N∧X1 ⊕ C11010∧F∧N∧X2 ⊕ C11001∧F∧N∧F0 ⊕ C10110∧F∧X1∧X2 ⊕ C10101∧F∧X1∧F0 ⊕ C10011∧F∧X2∧F0 ⊕ C01110∧N∧X1∧X2 ⊕ C01101∧N∧X1∧F0 ⊕ C01011∧N∧X2∧F0 ⊕ C00111∧X1∧X2∧F0 ⊕ C11110∧F∧N∧X1∧X2 ⊕ C11101∧F∧N∧X1∧F0 ⊕ C11011∧F∧N∧X2∧F0 ⊕ C10111∧F∧X1∧X2∧F0 ⊕ C01111∧N∧X1∧X2∧F0 ⊕ C11111∧F∧N∧X1∧X2∧F0

Так как Fж(00000) = 1, то С00000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 1 => С10000 = 1 ⊕ 1 = 0
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 1 ⊕ 1 = 0
Fж(00100) = С00000 ⊕ С00100 = 0 => С00100 = 1 ⊕ 0 = 1
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 1 ⊕ 1 = 0
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 1 ⊕ 1 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 1 => С01001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 0 => С00101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 1 => С11100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 0 => С10110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 1 => С11110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 1 => С11101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 1 => С11011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X1 ⊕ F∧N ⊕ X2∧F0 ⊕ X1∧X2∧F0
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы