Таблица истинности для функции ¬X∨¬¬Y∨¬X∧Z∨¬Y:


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

¬Y:
Y¬Y
01
10

(¬X)∧Z:
XZ¬X(¬X)∧Z
0010
0111
1000
1100

(¬X)∨Y:
XY¬X(¬X)∨Y
0011
0111
1000
1101

((¬X)∨Y)∨((¬X)∧Z):
XYZ¬X(¬X)∨Y¬X(¬X)∧Z((¬X)∨Y)∨((¬X)∧Z)
00011101
00111111
01011101
01111111
10000000
10100000
11001001
11101001

(((¬X)∨Y)∨((¬X)∧Z))∨(¬Y):
XYZ¬X(¬X)∨Y¬X(¬X)∧Z((¬X)∨Y)∨((¬X)∧Z)¬Y(((¬X)∨Y)∨((¬X)∧Z))∨(¬Y)
0001110111
0011111111
0101110101
0111111101
1000000011
1010000011
1100100101
1110100101

Общая таблица истинности:

XYZ¬X¬Y(¬X)∧Z(¬X)∨Y((¬X)∨Y)∨((¬X)∧Z)¬X∨¬¬Y∨¬X∧Z∨¬Y
000110111
001111111
010100111
011101111
100010001
101010001
110000111
111000111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы