Таблица истинности для функции F∧(X∧Y∧Z)≡X∨¬Z→Y∧Z:


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

(X∧Y)∧Z:
XYZX∧Y(X∧Y)∧Z
00000
00100
01000
01100
10000
10100
11010
11111

¬Z:
Z¬Z
01
10

F∧((X∧Y)∧Z):
FXYZX∧Y(X∧Y)∧ZF∧((X∧Y)∧Z)
0000000
0001000
0010000
0011000
0100000
0101000
0110100
0111110
1000000
1001000
1010000
1011000
1100000
1101000
1110100
1111111

Y∧Z:
YZY∧Z
000
010
100
111

X∨(¬Z):
XZ¬ZX∨(¬Z)
0011
0100
1011
1101

(X∨(¬Z))→(Y∧Z):
XZY¬ZX∨(¬Z)Y∧Z(X∨(¬Z))→(Y∧Z)
0001100
0011100
0100001
0110011
1001100
1011100
1100100
1110111

(F∧((X∧Y)∧Z))≡((X∨(¬Z))→(Y∧Z)):
FXYZX∧Y(X∧Y)∧ZF∧((X∧Y)∧Z)¬ZX∨(¬Z)Y∧Z(X∨(¬Z))→(Y∧Z)(F∧((X∧Y)∧Z))≡((X∨(¬Z))→(Y∧Z))
000000011001
000100000010
001000011001
001100000110
010000011001
010100001001
011010011001
011111001110
100000011001
100100000010
101000011001
101100000110
110000011001
110100001001
111010011001
111111101111

Общая таблица истинности:

FXYZX∧Y(X∧Y)∧Z¬ZF∧((X∧Y)∧Z)Y∧ZX∨(¬Z)(X∨(¬Z))→(Y∧Z)F∧(X∧Y∧Z)≡X∨¬Z→Y∧Z
000000100101
000100000010
001000100101
001100001010
010000100101
010100000101
011010100101
011111001110
100000100101
100100000010
101000100101
101100001010
110000100101
110100000101
111010100101
111111011111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FXYZF
00001
00010
00101
00110
01001
01011
01101
01110
10001
10010
10101
10110
11001
11011
11101
11111
Fсднф = ¬F∧¬X∧¬Y∧¬Z ∨ ¬F∧¬X∧Y∧¬Z ∨ ¬F∧X∧¬Y∧¬Z ∨ ¬F∧X∧¬Y∧Z ∨ ¬F∧X∧Y∧¬Z ∨ F∧¬X∧¬Y∧¬Z ∨ F∧¬X∧Y∧¬Z ∨ F∧X∧¬Y∧¬Z ∨ F∧X∧¬Y∧Z ∨ F∧X∧Y∧¬Z ∨ F∧X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FXYZF
00001
00010
00101
00110
01001
01011
01101
01110
10001
10010
10101
10110
11001
11011
11101
11111
Fскнф = (F∨X∨Y∨¬Z) ∧ (F∨X∨¬Y∨¬Z) ∧ (F∨¬X∨¬Y∨¬Z) ∧ (¬F∨X∨Y∨¬Z) ∧ (¬F∨X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FXYZFж
00001
00010
00101
00110
01001
01011
01101
01110
10001
10010
10101
10110
11001
11011
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧F ⊕ C0100∧X ⊕ C0010∧Y ⊕ C0001∧Z ⊕ C1100∧F∧X ⊕ C1010∧F∧Y ⊕ C1001∧F∧Z ⊕ C0110∧X∧Y ⊕ C0101∧X∧Z ⊕ C0011∧Y∧Z ⊕ C1110∧F∧X∧Y ⊕ C1101∧F∧X∧Z ⊕ C1011∧F∧Y∧Z ⊕ C0111∧X∧Y∧Z ⊕ C1111∧F∧X∧Y∧Z

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 1 ⊕ 0 = 1
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ Z ⊕ X∧Z ⊕ X∧Y∧Z ⊕ F∧X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы