Таблица истинности для функции (B∧C)∨(B∧A)∨(B∧D)∨(B∧E)∨(A∧D∧E∧B∧C):


Промежуточные таблицы истинности:
B∧C:
BCB∧C
000
010
100
111

B∧A:
BAB∧A
000
010
100
111

B∧D:
BDB∧D
000
010
100
111

B∧E:
BEB∧E
000
010
100
111

A∧D:
ADA∧D
000
010
100
111

(A∧D)∧E:
ADEA∧D(A∧D)∧E
00000
00100
01000
01100
10000
10100
11010
11111

((A∧D)∧E)∧B:
ADEBA∧D(A∧D)∧E((A∧D)∧E)∧B
0000000
0001000
0010000
0011000
0100000
0101000
0110000
0111000
1000000
1001000
1010000
1011000
1100100
1101100
1110110
1111111

(((A∧D)∧E)∧B)∧C:
ADEBCA∧D(A∧D)∧E((A∧D)∧E)∧B(((A∧D)∧E)∧B)∧C
000000000
000010000
000100000
000110000
001000000
001010000
001100000
001110000
010000000
010010000
010100000
010110000
011000000
011010000
011100000
011110000
100000000
100010000
100100000
100110000
101000000
101010000
101100000
101110000
110001000
110011000
110101000
110111000
111001100
111011100
111101110
111111111

(B∧C)∨(B∧A):
BCAB∧CB∧A(B∧C)∨(B∧A)
000000
001000
010000
011000
100000
101011
110101
111111

((B∧C)∨(B∧A))∨(B∧D):
BCADB∧CB∧A(B∧C)∨(B∧A)B∧D((B∧C)∨(B∧A))∨(B∧D)
000000000
000100000
001000000
001100000
010000000
010100000
011000000
011100000
100000000
100100011
101001101
101101111
110010101
110110111
111011101
111111111

(((B∧C)∨(B∧A))∨(B∧D))∨(B∧E):
BCADEB∧CB∧A(B∧C)∨(B∧A)B∧D((B∧C)∨(B∧A))∨(B∧D)B∧E(((B∧C)∨(B∧A))∨(B∧D))∨(B∧E)
000000000000
000010000000
000100000000
000110000000
001000000000
001010000000
001100000000
001110000000
010000000000
010010000000
010100000000
010110000000
011000000000
011010000000
011100000000
011110000000
100000000000
100010000011
100100001101
100110001111
101000110101
101010110111
101100111101
101110111111
110001010101
110011010111
110101011101
110111011111
111001110101
111011110111
111101111101
111111111111

((((B∧C)∨(B∧A))∨(B∧D))∨(B∧E))∨((((A∧D)∧E)∧B)∧C):
BCADEB∧CB∧A(B∧C)∨(B∧A)B∧D((B∧C)∨(B∧A))∨(B∧D)B∧E(((B∧C)∨(B∧A))∨(B∧D))∨(B∧E)A∧D(A∧D)∧E((A∧D)∧E)∧B(((A∧D)∧E)∧B)∧C((((B∧C)∨(B∧A))∨(B∧D))∨(B∧E))∨((((A∧D)∧E)∧B)∧C)
00000000000000000
00001000000000000
00010000000000000
00011000000000000
00100000000000000
00101000000000000
00110000000010000
00111000000011000
01000000000000000
01001000000000000
01010000000000000
01011000000000000
01100000000000000
01101000000000000
01110000000010000
01111000000011000
10000000000000000
10001000001100001
10010000110100001
10011000111100001
10100011010100001
10101011011100001
10110011110110001
10111011111111101
11000101010100001
11001101011100001
11010101110100001
11011101111100001
11100111010100001
11101111011100001
11110111110110001
11111111111111111

Общая таблица истинности:

BCADEB∧CB∧AB∧DB∧EA∧D(A∧D)∧E((A∧D)∧E)∧B(((A∧D)∧E)∧B)∧C(B∧C)∨(B∧A)((B∧C)∨(B∧A))∨(B∧D)(((B∧C)∨(B∧A))∨(B∧D))∨(B∧E)(B∧C)∨(B∧A)∨(B∧D)∨(B∧E)∨(A∧D∧E∧B∧C)
00000000000000000
00001000000000000
00010000000000000
00011000000000000
00100000000000000
00101000000000000
00110000010000000
00111000011000000
01000000000000000
01001000000000000
01010000000000000
01011000000000000
01100000000000000
01101000000000000
01110000010000000
01111000011000000
10000000000000000
10001000100000011
10010001000000111
10011001100000111
10100010000001111
10101010100001111
10110011010001111
10111011111101111
11000100000001111
11001100100001111
11010101000001111
11011101100001111
11100110000001111
11101110100001111
11110111010001111
11111111111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
BCADEF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
Fсднф = B∧¬C∧¬A∧¬D∧E ∨ B∧¬C∧¬A∧D∧¬E ∨ B∧¬C∧¬A∧D∧E ∨ B∧¬C∧A∧¬D∧¬E ∨ B∧¬C∧A∧¬D∧E ∨ B∧¬C∧A∧D∧¬E ∨ B∧¬C∧A∧D∧E ∨ B∧C∧¬A∧¬D∧¬E ∨ B∧C∧¬A∧¬D∧E ∨ B∧C∧¬A∧D∧¬E ∨ B∧C∧¬A∧D∧E ∨ B∧C∧A∧¬D∧¬E ∨ B∧C∧A∧¬D∧E ∨ B∧C∧A∧D∧¬E ∨ B∧C∧A∧D∧E
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
BCADEF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
Fскнф = (B∨C∨A∨D∨E) ∧ (B∨C∨A∨D∨¬E) ∧ (B∨C∨A∨¬D∨E) ∧ (B∨C∨A∨¬D∨¬E) ∧ (B∨C∨¬A∨D∨E) ∧ (B∨C∨¬A∨D∨¬E) ∧ (B∨C∨¬A∨¬D∨E) ∧ (B∨C∨¬A∨¬D∨¬E) ∧ (B∨¬C∨A∨D∨E) ∧ (B∨¬C∨A∨D∨¬E) ∧ (B∨¬C∨A∨¬D∨E) ∧ (B∨¬C∨A∨¬D∨¬E) ∧ (B∨¬C∨¬A∨D∨E) ∧ (B∨¬C∨¬A∨D∨¬E) ∧ (B∨¬C∨¬A∨¬D∨E) ∧ (B∨¬C∨¬A∨¬D∨¬E) ∧ (¬B∨C∨A∨D∨E)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
BCADEFж
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧B ⊕ C01000∧C ⊕ C00100∧A ⊕ C00010∧D ⊕ C00001∧E ⊕ C11000∧B∧C ⊕ C10100∧B∧A ⊕ C10010∧B∧D ⊕ C10001∧B∧E ⊕ C01100∧C∧A ⊕ C01010∧C∧D ⊕ C01001∧C∧E ⊕ C00110∧A∧D ⊕ C00101∧A∧E ⊕ C00011∧D∧E ⊕ C11100∧B∧C∧A ⊕ C11010∧B∧C∧D ⊕ C11001∧B∧C∧E ⊕ C10110∧B∧A∧D ⊕ C10101∧B∧A∧E ⊕ C10011∧B∧D∧E ⊕ C01110∧C∧A∧D ⊕ C01101∧C∧A∧E ⊕ C01011∧C∧D∧E ⊕ C00111∧A∧D∧E ⊕ C11110∧B∧C∧A∧D ⊕ C11101∧B∧C∧A∧E ⊕ C11011∧B∧C∧D∧E ⊕ C10111∧B∧A∧D∧E ⊕ C01111∧C∧A∧D∧E ⊕ C11111∧B∧C∧A∧D∧E

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 0 ⊕ 0 = 0
Fж(01000) = С00000 ⊕ С01000 = 0 => С01000 = 0 ⊕ 0 = 0
Fж(00100) = С00000 ⊕ С00100 = 0 => С00100 = 0 ⊕ 0 = 0
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 1 => С11000 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 1 => С10100 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 0 => С01010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 0 => С00101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 1 => С11100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 1 => С11010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 1 => С10101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 1 => С11110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 1 => С11101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 1 => С11011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = B∧C ⊕ B∧A ⊕ B∧D ⊕ B∧E ⊕ B∧C∧A ⊕ B∧C∧D ⊕ B∧C∧E ⊕ B∧A∧D ⊕ B∧A∧E ⊕ B∧D∧E ⊕ B∧C∧A∧D ⊕ B∧C∧A∧E ⊕ B∧C∧D∧E ⊕ B∧A∧D∧E ⊕ B∧C∧A∧D∧E
Логическая схема, соответствующая полиному Жегалкина: