Таблица истинности для функции (A∨B)∧(A∨C)∧(B→C):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

A∨C:
ACA∨C
000
011
101
111

B→C:
BCB→C
001
011
100
111

(A∨B)∧(A∨C):
ABCA∨BA∨C(A∨B)∧(A∨C)
000000
001010
010100
011111
100111
101111
110111
111111

((A∨B)∧(A∨C))∧(B→C):
ABCA∨BA∨C(A∨B)∧(A∨C)B→C((A∨B)∧(A∨C))∧(B→C)
00000010
00101010
01010000
01111111
10011111
10111111
11011100
11111111

Общая таблица истинности:

ABCA∨BA∨CB→C(A∨B)∧(A∨C)(A∨B)∧(A∨C)∧(B→C)
00000100
00101100
01010000
01111111
10011111
10111111
11011010
11111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0100
0111
1001
1011
1100
1111
Fсднф = ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0100
0111
1001
1011
1100
1111
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (¬A∨¬B∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0100
0111
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ A∧B ⊕ B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы