Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬X1∨¬X2↓X3→X1⊕X2←X3≡¬X1∧¬X2⊕X1:
Промежуточные таблицы истинности:¬X1: ¬X2: (¬X2)↓X3: X2 | X3 | ¬X2 | (¬X2)↓X3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
(¬X1)∧(¬X2): X1 | X2 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
(¬X1)∨((¬X2)↓X3): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X2)↓X3 | (¬X1)∨((¬X2)↓X3) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
X1⊕X2: ((¬X1)∧(¬X2))⊕X1: X1 | X2 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ((¬X1)∧(¬X2))⊕X1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
((¬X1)∨((¬X2)↓X3))→(X1⊕X2): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X2)↓X3 | (¬X1)∨((¬X2)↓X3) | X1⊕X2 | ((¬X1)∨((¬X2)↓X3))→(X1⊕X2) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
(((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3: X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X2)↓X3 | (¬X1)∨((¬X2)↓X3) | X1⊕X2 | ((¬X1)∨((¬X2)↓X3))→(X1⊕X2) | (((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
нажмите на таблицу для просмотра*((((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3)≡(((¬X1)∧(¬X2))⊕X1): X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X2)↓X3 | (¬X1)∨((¬X2)↓X3) | X1⊕X2 | ((¬X1)∨((¬X2)↓X3))→(X1⊕X2) | (((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ((¬X1)∧(¬X2))⊕X1 | ((((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3)≡(((¬X1)∧(¬X2))⊕X1) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
нажмите на таблицу для просмотра*Общая таблица истинности:X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X2)↓X3 | (¬X1)∧(¬X2) | (¬X1)∨((¬X2)↓X3) | X1⊕X2 | ((¬X1)∧(¬X2))⊕X1 | ((¬X1)∨((¬X2)↓X3))→(X1⊕X2) | (((¬X1)∨((¬X2)↓X3))→(X1⊕X2))←X3 | ¬X1∨¬X2↓X3→X1⊕X2←X3≡¬X1∧¬X2⊕X1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
нажмите на таблицу для просмотра*
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F скнф = (X1∨X2∨¬X3) ∧ (X1∨¬X2∨X3) ∧ (X1∨¬X2∨¬X3)
Построение полинома Жегалкина:
По таблице истинности функции X1 | X2 | X3 | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X1 ⊕ C 010∧X2 ⊕ C 001∧X3 ⊕ C 110∧X1∧X2 ⊕ C 101∧X1∧X3 ⊕ C 011∧X2∧X3 ⊕ C 111∧X1∧X2∧X3 Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 1 ⊕ 1 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 1 ⊕ 0 = 1 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 1 ⊕ 0 = 1 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 1 => С 111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ X2 ⊕ X3 ⊕ X1∧X2 ⊕ X1∧X3 ⊕ X2∧X3 ⊕ X1∧X2∧X3
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|