Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬Y1∧Y2∨¬Y3∧(Y1∨¬Y2∧Y3)∧¬Y3:
Промежуточные таблицы истинности:¬Y2: (¬Y2)∧Y3: Y2 | Y3 | ¬Y2 | (¬Y2)∧Y3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Y1∨((¬Y2)∧Y3): Y1 | Y2 | Y3 | ¬Y2 | (¬Y2)∧Y3 | Y1∨((¬Y2)∧Y3) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
¬Y1: ¬Y3: (¬Y1)∧Y2: Y1 | Y2 | ¬Y1 | (¬Y1)∧Y2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
(¬Y3)∧(Y1∨((¬Y2)∧Y3)): Y3 | Y1 | Y2 | ¬Y3 | ¬Y2 | (¬Y2)∧Y3 | Y1∨((¬Y2)∧Y3) | (¬Y3)∧(Y1∨((¬Y2)∧Y3)) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3): Y3 | Y1 | Y2 | ¬Y3 | ¬Y2 | (¬Y2)∧Y3 | Y1∨((¬Y2)∧Y3) | (¬Y3)∧(Y1∨((¬Y2)∧Y3)) | ¬Y3 | ((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
((¬Y1)∧Y2)∨(((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3)): Y1 | Y2 | Y3 | ¬Y1 | (¬Y1)∧Y2 | ¬Y3 | ¬Y2 | (¬Y2)∧Y3 | Y1∨((¬Y2)∧Y3) | (¬Y3)∧(Y1∨((¬Y2)∧Y3)) | ¬Y3 | ((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3) | ((¬Y1)∧Y2)∨(((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3)) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:Y1 | Y2 | Y3 | ¬Y2 | (¬Y2)∧Y3 | Y1∨((¬Y2)∧Y3) | ¬Y1 | ¬Y3 | (¬Y1)∧Y2 | (¬Y3)∧(Y1∨((¬Y2)∧Y3)) | ((¬Y3)∧(Y1∨((¬Y2)∧Y3)))∧(¬Y3) | ¬Y1∧Y2∨¬Y3∧(Y1∨¬Y2∧Y3)∧¬Y3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: Y1 | Y2 | Y3 | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬Y1∧Y2∧¬Y3 ∨ ¬Y1∧Y2∧Y3 ∨ Y1∧¬Y2∧¬Y3 ∨ Y1∧Y2∧¬Y3 Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: Y1 | Y2 | Y3 | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (Y1∨Y2∨Y3) ∧ (Y1∨Y2∨¬Y3) ∧ (¬Y1∨Y2∨¬Y3) ∧ (¬Y1∨¬Y2∨¬Y3) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Y1 | Y2 | Y3 | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧Y1 ⊕ C 010∧Y2 ⊕ C 001∧Y3 ⊕ C 110∧Y1∧Y2 ⊕ C 101∧Y1∧Y3 ⊕ C 011∧Y2∧Y3 ⊕ C 111∧Y1∧Y2∧Y3 Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 0 ⊕ 1 = 1 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 0 ⊕ 1 = 1 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 1 => С 011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = Y1 ⊕ Y2 ⊕ Y1∧Y2 ⊕ Y1∧Y3 Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|