Промежуточные таблицы истинности:¬B:
(¬B)∨C:
B | C | ¬B | (¬B)∨C |
0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 |
¬D:
¬E:
A∧((¬B)∨C):
A | B | C | ¬B | (¬B)∨C | A∧((¬B)∨C) |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 |
(A∧((¬B)∨C))∨(¬D):
A | B | C | D | ¬B | (¬B)∨C | A∧((¬B)∨C) | ¬D | (A∧((¬B)∨C))∨(¬D) |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
((A∧((¬B)∨C))∨(¬D))∨(¬E):
A | B | C | D | E | ¬B | (¬B)∨C | A∧((¬B)∨C) | ¬D | (A∧((¬B)∨C))∨(¬D) | ¬E | ((A∧((¬B)∨C))∨(¬D))∨(¬E) |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
(((A∧((¬B)∨C))∨(¬D))∨(¬E))∨G:
A | B | C | D | E | G | ¬B | (¬B)∨C | A∧((¬B)∨C) | ¬D | (A∧((¬B)∨C))∨(¬D) | ¬E | ((A∧((¬B)∨C))∨(¬D))∨(¬E) | (((A∧((¬B)∨C))∨(¬D))∨(¬E))∨G |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
нажмите на таблицу для просмотра*Общая таблица истинности:
A | B | C | D | E | G | ¬B | (¬B)∨C | ¬D | ¬E | A∧((¬B)∨C) | (A∧((¬B)∨C))∨(¬D) | ((A∧((¬B)∨C))∨(¬D))∨(¬E) | A∧(¬B∨C)∨¬D∨¬E∨G |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
нажмите на таблицу для просмотра* Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | D | E | G | F |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
F
сднф = ¬A∧¬B∧¬C∧¬D∧¬E∧¬G ∨ ¬A∧¬B∧¬C∧¬D∧¬E∧G ∨ ¬A∧¬B∧¬C∧¬D∧E∧¬G ∨ ¬A∧¬B∧¬C∧¬D∧E∧G ∨ ¬A∧¬B∧¬C∧D∧¬E∧¬G ∨ ¬A∧¬B∧¬C∧D∧¬E∧G ∨ ¬A∧¬B∧¬C∧D∧E∧G ∨ ¬A∧¬B∧C∧¬D∧¬E∧¬G ∨ ¬A∧¬B∧C∧¬D∧¬E∧G ∨ ¬A∧¬B∧C∧¬D∧E∧¬G ∨ ¬A∧¬B∧C∧¬D∧E∧G ∨ ¬A∧¬B∧C∧D∧¬E∧¬G ∨ ¬A∧¬B∧C∧D∧¬E∧G ∨ ¬A∧¬B∧C∧D∧E∧G ∨ ¬A∧B∧¬C∧¬D∧¬E∧¬G ∨ ¬A∧B∧¬C∧¬D∧¬E∧G ∨ ¬A∧B∧¬C∧¬D∧E∧¬G ∨ ¬A∧B∧¬C∧¬D∧E∧G ∨ ¬A∧B∧¬C∧D∧¬E∧¬G ∨ ¬A∧B∧¬C∧D∧¬E∧G ∨ ¬A∧B∧¬C∧D∧E∧G ∨ ¬A∧B∧C∧¬D∧¬E∧¬G ∨ ¬A∧B∧C∧¬D∧¬E∧G ∨ ¬A∧B∧C∧¬D∧E∧¬G ∨ ¬A∧B∧C∧¬D∧E∧G ∨ ¬A∧B∧C∧D∧¬E∧¬G ∨ ¬A∧B∧C∧D∧¬E∧G ∨ ¬A∧B∧C∧D∧E∧G ∨ A∧¬B∧¬C∧¬D∧¬E∧¬G ∨ A∧¬B∧¬C∧¬D∧¬E∧G ∨ A∧¬B∧¬C∧¬D∧E∧¬G ∨ A∧¬B∧¬C∧¬D∧E∧G ∨ A∧¬B∧¬C∧D∧¬E∧¬G ∨ A∧¬B∧¬C∧D∧¬E∧G ∨ A∧¬B∧¬C∧D∧E∧¬G ∨ A∧¬B∧¬C∧D∧E∧G ∨ A∧¬B∧C∧¬D∧¬E∧¬G ∨ A∧¬B∧C∧¬D∧¬E∧G ∨ A∧¬B∧C∧¬D∧E∧¬G ∨ A∧¬B∧C∧¬D∧E∧G ∨ A∧¬B∧C∧D∧¬E∧¬G ∨ A∧¬B∧C∧D∧¬E∧G ∨ A∧¬B∧C∧D∧E∧¬G ∨ A∧¬B∧C∧D∧E∧G ∨ A∧B∧¬C∧¬D∧¬E∧¬G ∨ A∧B∧¬C∧¬D∧¬E∧G ∨ A∧B∧¬C∧¬D∧E∧¬G ∨ A∧B∧¬C∧¬D∧E∧G ∨ A∧B∧¬C∧D∧¬E∧¬G ∨ A∧B∧¬C∧D∧¬E∧G ∨ A∧B∧¬C∧D∧E∧G ∨ A∧B∧C∧¬D∧¬E∧¬G ∨ A∧B∧C∧¬D∧¬E∧G ∨ A∧B∧C∧¬D∧E∧¬G ∨ A∧B∧C∧¬D∧E∧G ∨ A∧B∧C∧D∧¬E∧¬G ∨ A∧B∧C∧D∧¬E∧G ∨ A∧B∧C∧D∧E∧¬G ∨ A∧B∧C∧D∧E∧G
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | D | E | G | F |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
F
скнф = (A∨B∨C∨¬D∨¬E∨G) ∧ (A∨B∨¬C∨¬D∨¬E∨G) ∧ (A∨¬B∨C∨¬D∨¬E∨G) ∧ (A∨¬B∨¬C∨¬D∨¬E∨G) ∧ (¬A∨¬B∨C∨¬D∨¬E∨G)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
A | B | C | D | E | G | Fж |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
000000 ⊕ C
100000∧A ⊕ C
010000∧B ⊕ C
001000∧C ⊕ C
000100∧D ⊕ C
000010∧E ⊕ C
000001∧G ⊕ C
110000∧A∧B ⊕ C
101000∧A∧C ⊕ C
100100∧A∧D ⊕ C
100010∧A∧E ⊕ C
100001∧A∧G ⊕ C
011000∧B∧C ⊕ C
010100∧B∧D ⊕ C
010010∧B∧E ⊕ C
010001∧B∧G ⊕ C
001100∧C∧D ⊕ C
001010∧C∧E ⊕ C
001001∧C∧G ⊕ C
000110∧D∧E ⊕ C
000101∧D∧G ⊕ C
000011∧E∧G ⊕ C
111000∧A∧B∧C ⊕ C
110100∧A∧B∧D ⊕ C
110010∧A∧B∧E ⊕ C
110001∧A∧B∧G ⊕ C
101100∧A∧C∧D ⊕ C
101010∧A∧C∧E ⊕ C
101001∧A∧C∧G ⊕ C
100110∧A∧D∧E ⊕ C
100101∧A∧D∧G ⊕ C
100011∧A∧E∧G ⊕ C
011100∧B∧C∧D ⊕ C
011010∧B∧C∧E ⊕ C
011001∧B∧C∧G ⊕ C
010110∧B∧D∧E ⊕ C
010101∧B∧D∧G ⊕ C
010011∧B∧E∧G ⊕ C
001110∧C∧D∧E ⊕ C
001101∧C∧D∧G ⊕ C
001011∧C∧E∧G ⊕ C
000111∧D∧E∧G ⊕ C
111100∧A∧B∧C∧D ⊕ C
111010∧A∧B∧C∧E ⊕ C
111001∧A∧B∧C∧G ⊕ C
110110∧A∧B∧D∧E ⊕ C
110101∧A∧B∧D∧G ⊕ C
110011∧A∧B∧E∧G ⊕ C
101110∧A∧C∧D∧E ⊕ C
101101∧A∧C∧D∧G ⊕ C
101011∧A∧C∧E∧G ⊕ C
100111∧A∧D∧E∧G ⊕ C
011110∧B∧C∧D∧E ⊕ C
011101∧B∧C∧D∧G ⊕ C
011011∧B∧C∧E∧G ⊕ C
010111∧B∧D∧E∧G ⊕ C
001111∧C∧D∧E∧G ⊕ C
111110∧A∧B∧C∧D∧E ⊕ C
111101∧A∧B∧C∧D∧G ⊕ C
111011∧A∧B∧C∧E∧G ⊕ C
110111∧A∧B∧D∧E∧G ⊕ C
101111∧A∧C∧D∧E∧G ⊕ C
011111∧B∧C∧D∧E∧G ⊕ C
111111∧A∧B∧C∧D∧E∧G
Так как F
ж(000000) = 1, то С
000000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(100000) = С
000000 ⊕ С
100000 = 1 => С
100000 = 1 ⊕ 1 = 0
F
ж(010000) = С
000000 ⊕ С
010000 = 1 => С
010000 = 1 ⊕ 1 = 0
F
ж(001000) = С
000000 ⊕ С
001000 = 1 => С
001000 = 1 ⊕ 1 = 0
F
ж(000100) = С
000000 ⊕ С
000100 = 1 => С
000100 = 1 ⊕ 1 = 0
F
ж(000010) = С
000000 ⊕ С
000010 = 1 => С
000010 = 1 ⊕ 1 = 0
F
ж(000001) = С
000000 ⊕ С
000001 = 1 => С
000001 = 1 ⊕ 1 = 0
F
ж(110000) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
110000 = 1 => С
110000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101000) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
101000 = 1 => С
101000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100100) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
100100 = 1 => С
100100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100010) = С
000000 ⊕ С
100000 ⊕ С
000010 ⊕ С
100010 = 1 => С
100010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100001) = С
000000 ⊕ С
100000 ⊕ С
000001 ⊕ С
100001 = 1 => С
100001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011000) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
011000 = 1 => С
011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010100) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
010100 = 1 => С
010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010010) = С
000000 ⊕ С
010000 ⊕ С
000010 ⊕ С
010010 = 1 => С
010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010001) = С
000000 ⊕ С
010000 ⊕ С
000001 ⊕ С
010001 = 1 => С
010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001100) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
001100 = 1 => С
001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001010) = С
000000 ⊕ С
001000 ⊕ С
000010 ⊕ С
001010 = 1 => С
001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001001) = С
000000 ⊕ С
001000 ⊕ С
000001 ⊕ С
001001 = 1 => С
001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000110) = С
000000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000110 = 0 => С
000110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
F
ж(000101) = С
000000 ⊕ С
000100 ⊕ С
000001 ⊕ С
000101 = 1 => С
000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000011) = С
000000 ⊕ С
000010 ⊕ С
000001 ⊕ С
000011 = 1 => С
000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111000) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
110000 ⊕ С
101000 ⊕ С
011000 ⊕ С
111000 = 1 => С
111000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110100) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
110000 ⊕ С
100100 ⊕ С
010100 ⊕ С
110100 = 1 => С
110100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110010) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000010 ⊕ С
110000 ⊕ С
100010 ⊕ С
010010 ⊕ С
110010 = 1 => С
110010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110001) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000001 ⊕ С
110000 ⊕ С
100001 ⊕ С
010001 ⊕ С
110001 = 1 => С
110001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101100) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
101000 ⊕ С
100100 ⊕ С
001100 ⊕ С
101100 = 1 => С
101100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101010) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000010 ⊕ С
101000 ⊕ С
100010 ⊕ С
001010 ⊕ С
101010 = 1 => С
101010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101001) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000001 ⊕ С
101000 ⊕ С
100001 ⊕ С
001001 ⊕ С
101001 = 1 => С
101001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100110) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000010 ⊕ С
100100 ⊕ С
100010 ⊕ С
000110 ⊕ С
100110 = 1 => С
100110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
F
ж(100101) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000001 ⊕ С
100100 ⊕ С
100001 ⊕ С
000101 ⊕ С
100101 = 1 => С
100101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100011) = С
000000 ⊕ С
100000 ⊕ С
000010 ⊕ С
000001 ⊕ С
100010 ⊕ С
100001 ⊕ С
000011 ⊕ С
100011 = 1 => С
100011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011100) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
011000 ⊕ С
010100 ⊕ С
001100 ⊕ С
011100 = 1 => С
011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011010) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
011000 ⊕ С
010010 ⊕ С
001010 ⊕ С
011010 = 1 => С
011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011001) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000001 ⊕ С
011000 ⊕ С
010001 ⊕ С
001001 ⊕ С
011001 = 1 => С
011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010110) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
010100 ⊕ С
010010 ⊕ С
000110 ⊕ С
010110 = 0 => С
010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
F
ж(010101) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000001 ⊕ С
010100 ⊕ С
010001 ⊕ С
000101 ⊕ С
010101 = 1 => С
010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010011) = С
000000 ⊕ С
010000 ⊕ С
000010 ⊕ С
000001 ⊕ С
010010 ⊕ С
010001 ⊕ С
000011 ⊕ С
010011 = 1 => С
010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001110) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
001110 = 0 => С
001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
F
ж(001101) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
001101 = 1 => С
001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(001011) = С
000000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
001011 = 1 => С
001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(000111) = С
000000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
000111 = 1 => С
000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
F
ж(111100) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
011000 ⊕ С
010100 ⊕ С
001100 ⊕ С
111000 ⊕ С
110100 ⊕ С
101100 ⊕ С
011100 ⊕ С
111100 = 1 => С
111100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111010) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
110000 ⊕ С
101000 ⊕ С
100010 ⊕ С
011000 ⊕ С
010010 ⊕ С
001010 ⊕ С
111000 ⊕ С
110010 ⊕ С
101010 ⊕ С
011010 ⊕ С
111010 = 1 => С
111010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111001) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100001 ⊕ С
011000 ⊕ С
010001 ⊕ С
001001 ⊕ С
111000 ⊕ С
110001 ⊕ С
101001 ⊕ С
011001 ⊕ С
111001 = 1 => С
111001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110110) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
110000 ⊕ С
100100 ⊕ С
100010 ⊕ С
010100 ⊕ С
010010 ⊕ С
000110 ⊕ С
110100 ⊕ С
110010 ⊕ С
100110 ⊕ С
010110 ⊕ С
110110 = 0 => С
110110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
F
ж(110101) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000001 ⊕ С
110000 ⊕ С
100100 ⊕ С
100001 ⊕ С
010100 ⊕ С
010001 ⊕ С
000101 ⊕ С
110100 ⊕ С
110001 ⊕ С
100101 ⊕ С
010101 ⊕ С
110101 = 1 => С
110101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110011) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
100010 ⊕ С
100001 ⊕ С
010010 ⊕ С
010001 ⊕ С
000011 ⊕ С
110010 ⊕ С
110001 ⊕ С
100011 ⊕ С
010011 ⊕ С
110011 = 1 => С
110011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101110) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
101100 ⊕ С
101010 ⊕ С
100110 ⊕ С
001110 ⊕ С
101110 = 1 => С
101110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
F
ж(101101) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
101000 ⊕ С
100100 ⊕ С
100001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
101100 ⊕ С
101001 ⊕ С
100101 ⊕ С
001101 ⊕ С
101101 = 1 => С
101101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(101011) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
101000 ⊕ С
100010 ⊕ С
100001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
101010 ⊕ С
101001 ⊕ С
100011 ⊕ С
001011 ⊕ С
101011 = 1 => С
101011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(100111) = С
000000 ⊕ С
100000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
000111 ⊕ С
100111 = 1 => С
100111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
F
ж(011110) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
011100 ⊕ С
011010 ⊕ С
010110 ⊕ С
001110 ⊕ С
011110 = 0 => С
011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(011101) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
011100 ⊕ С
011001 ⊕ С
010101 ⊕ С
001101 ⊕ С
011101 = 1 => С
011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(011011) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
011000 ⊕ С
010010 ⊕ С
010001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
011010 ⊕ С
011001 ⊕ С
010011 ⊕ С
001011 ⊕ С
011011 = 1 => С
011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(010111) = С
000000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
000111 ⊕ С
010111 = 1 => С
010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(001111) = С
000000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
001111 = 1 => С
001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(111110) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
001100 ⊕ С
001010 ⊕ С
000110 ⊕ С
111000 ⊕ С
110100 ⊕ С
110010 ⊕ С
101100 ⊕ С
101010 ⊕ С
100110 ⊕ С
011100 ⊕ С
011010 ⊕ С
010110 ⊕ С
001110 ⊕ С
111100 ⊕ С
111010 ⊕ С
110110 ⊕ С
101110 ⊕ С
011110 ⊕ С
111110 = 1 => С
111110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
F
ж(111101) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010001 ⊕ С
001100 ⊕ С
001001 ⊕ С
000101 ⊕ С
111000 ⊕ С
110100 ⊕ С
110001 ⊕ С
101100 ⊕ С
101001 ⊕ С
100101 ⊕ С
011100 ⊕ С
011001 ⊕ С
010101 ⊕ С
001101 ⊕ С
111100 ⊕ С
111001 ⊕ С
110101 ⊕ С
101101 ⊕ С
011101 ⊕ С
111101 = 1 => С
111101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111011) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100010 ⊕ С
100001 ⊕ С
011000 ⊕ С
010010 ⊕ С
010001 ⊕ С
001010 ⊕ С
001001 ⊕ С
000011 ⊕ С
111000 ⊕ С
110010 ⊕ С
110001 ⊕ С
101010 ⊕ С
101001 ⊕ С
100011 ⊕ С
011010 ⊕ С
011001 ⊕ С
010011 ⊕ С
001011 ⊕ С
111010 ⊕ С
111001 ⊕ С
110011 ⊕ С
101011 ⊕ С
011011 ⊕ С
111011 = 1 => С
111011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(110111) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
110100 ⊕ С
110010 ⊕ С
110001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
000111 ⊕ С
110110 ⊕ С
110101 ⊕ С
110011 ⊕ С
100111 ⊕ С
010111 ⊕ С
110111 = 1 => С
110111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1
F
ж(101111) = С
000000 ⊕ С
100000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
101100 ⊕ С
101010 ⊕ С
101001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
101110 ⊕ С
101101 ⊕ С
101011 ⊕ С
100111 ⊕ С
001111 ⊕ С
101111 = 1 => С
101111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
F
ж(011111) = С
000000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
011100 ⊕ С
011010 ⊕ С
011001 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
011110 ⊕ С
011101 ⊕ С
011011 ⊕ С
010111 ⊕ С
001111 ⊕ С
011111 = 1 => С
011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(111111) = С
000000 ⊕ С
100000 ⊕ С
010000 ⊕ С
001000 ⊕ С
000100 ⊕ С
000010 ⊕ С
000001 ⊕ С
110000 ⊕ С
101000 ⊕ С
100100 ⊕ С
100010 ⊕ С
100001 ⊕ С
011000 ⊕ С
010100 ⊕ С
010010 ⊕ С
010001 ⊕ С
001100 ⊕ С
001010 ⊕ С
001001 ⊕ С
000110 ⊕ С
000101 ⊕ С
000011 ⊕ С
111000 ⊕ С
110100 ⊕ С
110010 ⊕ С
110001 ⊕ С
101100 ⊕ С
101010 ⊕ С
101001 ⊕ С
100110 ⊕ С
100101 ⊕ С
100011 ⊕ С
011100 ⊕ С
011010 ⊕ С
011001 ⊕ С
010110 ⊕ С
010101 ⊕ С
010011 ⊕ С
001110 ⊕ С
001101 ⊕ С
001011 ⊕ С
000111 ⊕ С
111100 ⊕ С
111010 ⊕ С
111001 ⊕ С
110110 ⊕ С
110101 ⊕ С
110011 ⊕ С
101110 ⊕ С
101101 ⊕ С
101011 ⊕ С
100111 ⊕ С
011110 ⊕ С
011101 ⊕ С
011011 ⊕ С
010111 ⊕ С
001111 ⊕ С
111110 ⊕ С
111101 ⊕ С
111011 ⊕ С
110111 ⊕ С
101111 ⊕ С
011111 ⊕ С
111111 = 1 => С
111111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
F
ж = 1 ⊕ D∧E ⊕ A∧D∧E ⊕ D∧E∧G ⊕ A∧B∧D∧E ⊕ A∧D∧E∧G ⊕ A∧B∧C∧D∧E ⊕ A∧B∧D∧E∧G ⊕ A∧B∧C∧D∧E∧G
Логическая схема, соответствующая полиному Жегалкина: