Таблица истинности для функции A∧(¬B∨C)∨¬D∨¬E∨G:


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

(¬B)∨C:
BC¬B(¬B)∨C
0011
0111
1000
1101

¬D:
D¬D
01
10

¬E:
E¬E
01
10

A∧((¬B)∨C):
ABC¬B(¬B)∨CA∧((¬B)∨C)
000110
001110
010000
011010
100111
101111
110000
111011

(A∧((¬B)∨C))∨(¬D):
ABCD¬B(¬B)∨CA∧((¬B)∨C)¬D(A∧((¬B)∨C))∨(¬D)
000011011
000111000
001011011
001111000
010000011
010100000
011001011
011101000
100011111
100111101
101011111
101111101
110000011
110100000
111001111
111101101

((A∧((¬B)∨C))∨(¬D))∨(¬E):
ABCDE¬B(¬B)∨CA∧((¬B)∨C)¬D(A∧((¬B)∨C))∨(¬D)¬E((A∧((¬B)∨C))∨(¬D))∨(¬E)
000001101111
000011101101
000101100011
000111100000
001001101111
001011101101
001101100011
001111100000
010000001111
010010001101
010100000011
010110000000
011000101111
011010101101
011100100011
011110100000
100001111111
100011111101
100101110111
100111110101
101001111111
101011111101
101101110111
101111110101
110000001111
110010001101
110100000011
110110000000
111000111111
111010111101
111100110111
111110110101

(((A∧((¬B)∨C))∨(¬D))∨(¬E))∨G:
нажмите на таблицу для просмотра*

Общая таблица истинности:

нажмите на таблицу для просмотра*

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDEGF
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101100
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110001
1110011
1110101
1110111
1111001
1111011
1111101
1111111
Fсднф = ¬A∧¬B∧¬C∧¬D∧¬E∧¬G ∨ ¬A∧¬B∧¬C∧¬D∧¬E∧G ∨ ¬A∧¬B∧¬C∧¬D∧E∧¬G ∨ ¬A∧¬B∧¬C∧¬D∧E∧G ∨ ¬A∧¬B∧¬C∧D∧¬E∧¬G ∨ ¬A∧¬B∧¬C∧D∧¬E∧G ∨ ¬A∧¬B∧¬C∧D∧E∧G ∨ ¬A∧¬B∧C∧¬D∧¬E∧¬G ∨ ¬A∧¬B∧C∧¬D∧¬E∧G ∨ ¬A∧¬B∧C∧¬D∧E∧¬G ∨ ¬A∧¬B∧C∧¬D∧E∧G ∨ ¬A∧¬B∧C∧D∧¬E∧¬G ∨ ¬A∧¬B∧C∧D∧¬E∧G ∨ ¬A∧¬B∧C∧D∧E∧G ∨ ¬A∧B∧¬C∧¬D∧¬E∧¬G ∨ ¬A∧B∧¬C∧¬D∧¬E∧G ∨ ¬A∧B∧¬C∧¬D∧E∧¬G ∨ ¬A∧B∧¬C∧¬D∧E∧G ∨ ¬A∧B∧¬C∧D∧¬E∧¬G ∨ ¬A∧B∧¬C∧D∧¬E∧G ∨ ¬A∧B∧¬C∧D∧E∧G ∨ ¬A∧B∧C∧¬D∧¬E∧¬G ∨ ¬A∧B∧C∧¬D∧¬E∧G ∨ ¬A∧B∧C∧¬D∧E∧¬G ∨ ¬A∧B∧C∧¬D∧E∧G ∨ ¬A∧B∧C∧D∧¬E∧¬G ∨ ¬A∧B∧C∧D∧¬E∧G ∨ ¬A∧B∧C∧D∧E∧G ∨ A∧¬B∧¬C∧¬D∧¬E∧¬G ∨ A∧¬B∧¬C∧¬D∧¬E∧G ∨ A∧¬B∧¬C∧¬D∧E∧¬G ∨ A∧¬B∧¬C∧¬D∧E∧G ∨ A∧¬B∧¬C∧D∧¬E∧¬G ∨ A∧¬B∧¬C∧D∧¬E∧G ∨ A∧¬B∧¬C∧D∧E∧¬G ∨ A∧¬B∧¬C∧D∧E∧G ∨ A∧¬B∧C∧¬D∧¬E∧¬G ∨ A∧¬B∧C∧¬D∧¬E∧G ∨ A∧¬B∧C∧¬D∧E∧¬G ∨ A∧¬B∧C∧¬D∧E∧G ∨ A∧¬B∧C∧D∧¬E∧¬G ∨ A∧¬B∧C∧D∧¬E∧G ∨ A∧¬B∧C∧D∧E∧¬G ∨ A∧¬B∧C∧D∧E∧G ∨ A∧B∧¬C∧¬D∧¬E∧¬G ∨ A∧B∧¬C∧¬D∧¬E∧G ∨ A∧B∧¬C∧¬D∧E∧¬G ∨ A∧B∧¬C∧¬D∧E∧G ∨ A∧B∧¬C∧D∧¬E∧¬G ∨ A∧B∧¬C∧D∧¬E∧G ∨ A∧B∧¬C∧D∧E∧G ∨ A∧B∧C∧¬D∧¬E∧¬G ∨ A∧B∧C∧¬D∧¬E∧G ∨ A∧B∧C∧¬D∧E∧¬G ∨ A∧B∧C∧¬D∧E∧G ∨ A∧B∧C∧D∧¬E∧¬G ∨ A∧B∧C∧D∧¬E∧G ∨ A∧B∧C∧D∧E∧¬G ∨ A∧B∧C∧D∧E∧G
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDEGF
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101100
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110001
1110011
1110101
1110111
1111001
1111011
1111101
1111111
Fскнф = (A∨B∨C∨¬D∨¬E∨G) ∧ (A∨B∨¬C∨¬D∨¬E∨G) ∧ (A∨¬B∨C∨¬D∨¬E∨G) ∧ (A∨¬B∨¬C∨¬D∨¬E∨G) ∧ (¬A∨¬B∨C∨¬D∨¬E∨G)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDEGFж
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101100
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110001
1110011
1110101
1110111
1111001
1111011
1111101
1111111

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧A ⊕ C010000∧B ⊕ C001000∧C ⊕ C000100∧D ⊕ C000010∧E ⊕ C000001∧G ⊕ C110000∧A∧B ⊕ C101000∧A∧C ⊕ C100100∧A∧D ⊕ C100010∧A∧E ⊕ C100001∧A∧G ⊕ C011000∧B∧C ⊕ C010100∧B∧D ⊕ C010010∧B∧E ⊕ C010001∧B∧G ⊕ C001100∧C∧D ⊕ C001010∧C∧E ⊕ C001001∧C∧G ⊕ C000110∧D∧E ⊕ C000101∧D∧G ⊕ C000011∧E∧G ⊕ C111000∧A∧B∧C ⊕ C110100∧A∧B∧D ⊕ C110010∧A∧B∧E ⊕ C110001∧A∧B∧G ⊕ C101100∧A∧C∧D ⊕ C101010∧A∧C∧E ⊕ C101001∧A∧C∧G ⊕ C100110∧A∧D∧E ⊕ C100101∧A∧D∧G ⊕ C100011∧A∧E∧G ⊕ C011100∧B∧C∧D ⊕ C011010∧B∧C∧E ⊕ C011001∧B∧C∧G ⊕ C010110∧B∧D∧E ⊕ C010101∧B∧D∧G ⊕ C010011∧B∧E∧G ⊕ C001110∧C∧D∧E ⊕ C001101∧C∧D∧G ⊕ C001011∧C∧E∧G ⊕ C000111∧D∧E∧G ⊕ C111100∧A∧B∧C∧D ⊕ C111010∧A∧B∧C∧E ⊕ C111001∧A∧B∧C∧G ⊕ C110110∧A∧B∧D∧E ⊕ C110101∧A∧B∧D∧G ⊕ C110011∧A∧B∧E∧G ⊕ C101110∧A∧C∧D∧E ⊕ C101101∧A∧C∧D∧G ⊕ C101011∧A∧C∧E∧G ⊕ C100111∧A∧D∧E∧G ⊕ C011110∧B∧C∧D∧E ⊕ C011101∧B∧C∧D∧G ⊕ C011011∧B∧C∧E∧G ⊕ C010111∧B∧D∧E∧G ⊕ C001111∧C∧D∧E∧G ⊕ C111110∧A∧B∧C∧D∧E ⊕ C111101∧A∧B∧C∧D∧G ⊕ C111011∧A∧B∧C∧E∧G ⊕ C110111∧A∧B∧D∧E∧G ⊕ C101111∧A∧C∧D∧E∧G ⊕ C011111∧B∧C∧D∧E∧G ⊕ C111111∧A∧B∧C∧D∧E∧G

Так как Fж(000000) = 1, то С000000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 1 => С100000 = 1 ⊕ 1 = 0
Fж(010000) = С000000 ⊕ С010000 = 1 => С010000 = 1 ⊕ 1 = 0
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 1 ⊕ 1 = 0
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 1 ⊕ 1 = 0
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 1 ⊕ 1 = 0
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 1 ⊕ 1 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 1 => С110000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 1 => С101000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 1 => С100100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 1 => С100010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 1 => С100001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 1 => С011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 1 => С010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 1 => С010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 1 => С010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 1 => С001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 1 => С001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 1 => С001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 0 => С000110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 1 => С000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 1 => С000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 1 => С111000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 1 => С110100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 1 => С110010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 1 => С110001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 1 => С101100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 1 => С101010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 1 => С101001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 1 => С100110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 1 => С100101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 1 => С100011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 0 => С010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 1 => С010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 0 => С001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 1 => С111100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 1 => С111010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 1 => С111001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 0 => С110110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 1 => С110101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 1 => С110011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 1 => С101110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 1 => С101101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 1 => С101011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 1 => С100111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 0 => С011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 1 => С010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 1 => С001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 1 => С111110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 1 => С111101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 1 => С111011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 1 => С110111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 1 => С101111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 1 => С011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 1 => С111111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ D∧E ⊕ A∧D∧E ⊕ D∧E∧G ⊕ A∧B∧D∧E ⊕ A∧D∧E∧G ⊕ A∧B∧C∧D∧E ⊕ A∧B∧D∧E∧G ⊕ A∧B∧C∧D∧E∧G
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы