Таблица истинности для функции X≡¬(1∨Y):


Промежуточные таблицы истинности:
1∨Y:
Y1∨Y
01
11

¬(1∨Y):
Y1∨Y¬(1∨Y)
010
110

X≡(¬(1∨Y)):
XY1∨Y¬(1∨Y)X≡(¬(1∨Y))
00101
01101
10100
11100

Общая таблица истинности:

XY1∨Y¬(1∨Y)X≡¬(1∨Y)
00101
01101
10100
11100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYF
001
011
100
110
Fсднф = ¬X∧¬Y ∨ ¬X∧Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYF
001
011
100
110
Fскнф = (¬X∨Y) ∧ (¬X∨¬Y)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYFж
001
011
100
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 1 ⊕ 0 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы