Таблица истинности для функции ((Z∧¬Y)≡X)∨(¬Z→Y):
Промежуточные таблицы истинности:
¬Y:
Z∧(¬Y):
(Z∧(¬Y))≡X:
¬Z:
(¬Z)→Y:
((Z∧(¬Y))≡X)∨((¬Z)→Y):
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:Fсднф = ¬Z∧¬Y∧¬X ∨ ¬Z∧Y∧¬X ∨ ¬Z∧Y∧X ∨ Z∧¬Y∧¬X ∨ Z∧¬Y∧X ∨ Z∧Y∧¬X ∨ Z∧Y∧X
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:Fскнф = (Z∨Y∨¬X)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C000 ⊕ C100∧Z ⊕ C010∧Y ⊕ C001∧X ⊕ C110∧Z∧Y ⊕ C101∧Z∧X ⊕ C011∧Y∧X ⊕ C111∧Z∧Y∧X
Так как Fж(000) = 1, то С000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Z∧X ⊕ Y∧X ⊕ Z∧Y∧X
Логическая схема, соответствующая полиному Жегалкина: