Таблица истинности для функции A∧(¬B∨¬A)∧B:


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

¬A:
A¬A
01
10

(¬B)∨(¬A):
BA¬B¬A(¬B)∨(¬A)
00111
01101
10011
11000

A∧((¬B)∨(¬A)):
AB¬B¬A(¬B)∨(¬A)A∧((¬B)∨(¬A))
001110
010110
101011
110000

(A∧((¬B)∨(¬A)))∧B:
AB¬B¬A(¬B)∨(¬A)A∧((¬B)∨(¬A))(A∧((¬B)∨(¬A)))∧B
0011100
0101100
1010110
1100000

Общая таблица истинности:

AB¬B¬A(¬B)∨(¬A)A∧((¬B)∨(¬A))A∧(¬B∨¬A)∧B
0011100
0101100
1010110
1100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
010
100
110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
010
100
110
Fскнф = (A∨B) ∧ (A∨¬B) ∧ (¬A∨B) ∧ (¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
010
100
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2023, Список Литературы