Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬(¬A∧D→A)→¬(A∧C∧D∨C)∧(A→¬(A∧C∧D∨¬C)):
Промежуточные таблицы истинности:¬A: (¬A)∧D: A | D | ¬A | (¬A)∧D | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬A)∧D)→A: A | D | ¬A | (¬A)∧D | ((¬A)∧D)→A | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
A∧C: (A∧C)∧D: A | C | D | A∧C | (A∧C)∧D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
((A∧C)∧D)∨C: A | C | D | A∧C | (A∧C)∧D | ((A∧C)∧D)∨C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
¬C: ((A∧C)∧D)∨(¬C): A | C | D | A∧C | (A∧C)∧D | ¬C | ((A∧C)∧D)∨(¬C) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
¬(((A∧C)∧D)∨(¬C)): A | C | D | A∧C | (A∧C)∧D | ¬C | ((A∧C)∧D)∨(¬C) | ¬(((A∧C)∧D)∨(¬C)) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
A→(¬(((A∧C)∧D)∨(¬C))): A | C | D | A∧C | (A∧C)∧D | ¬C | ((A∧C)∧D)∨(¬C) | ¬(((A∧C)∧D)∨(¬C)) | A→(¬(((A∧C)∧D)∨(¬C))) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
¬(((¬A)∧D)→A): A | D | ¬A | (¬A)∧D | ((¬A)∧D)→A | ¬(((¬A)∧D)→A) | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
¬(((A∧C)∧D)∨C): A | C | D | A∧C | (A∧C)∧D | ((A∧C)∧D)∨C | ¬(((A∧C)∧D)∨C) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
(¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C)))): A | C | D | A∧C | (A∧C)∧D | ((A∧C)∧D)∨C | ¬(((A∧C)∧D)∨C) | A∧C | (A∧C)∧D | ¬C | ((A∧C)∧D)∨(¬C) | ¬(((A∧C)∧D)∨(¬C)) | A→(¬(((A∧C)∧D)∨(¬C))) | (¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C)))) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
(¬(((¬A)∧D)→A))→((¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C))))): A | D | C | ¬A | (¬A)∧D | ((¬A)∧D)→A | ¬(((¬A)∧D)→A) | A∧C | (A∧C)∧D | ((A∧C)∧D)∨C | ¬(((A∧C)∧D)∨C) | A∧C | (A∧C)∧D | ¬C | ((A∧C)∧D)∨(¬C) | ¬(((A∧C)∧D)∨(¬C)) | A→(¬(((A∧C)∧D)∨(¬C))) | (¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C)))) | (¬(((¬A)∧D)→A))→((¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C))))) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
Общая таблица истинности:A | D | C | ¬A | (¬A)∧D | ((¬A)∧D)→A | A∧C | (A∧C)∧D | ((A∧C)∧D)∨C | ¬C | ((A∧C)∧D)∨(¬C) | ¬(((A∧C)∧D)∨(¬C)) | A→(¬(((A∧C)∧D)∨(¬C))) | ¬(((¬A)∧D)→A) | ¬(((A∧C)∧D)∨C) | (¬(((A∧C)∧D)∨C))∧(A→(¬(((A∧C)∧D)∨(¬C)))) | ¬(¬A∧D→A)→¬(A∧C∧D∨C)∧(A→¬(A∧C∧D∨¬C)) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: A | D | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F сднф = ¬A∧¬D∧¬C ∨ ¬A∧¬D∧C ∨ ¬A∧D∧¬C ∨ A∧¬D∧¬C ∨ A∧¬D∧C ∨ A∧D∧¬C ∨ A∧D∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: A | D | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F скнф = (A∨¬D∨¬C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции A | D | C | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧A ⊕ C 010∧D ⊕ C 001∧C ⊕ C 110∧A∧D ⊕ C 101∧A∧C ⊕ C 011∧D∧C ⊕ C 111∧A∧D∧C Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 1 ⊕ 1 = 0 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 1 => С 111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ D∧C ⊕ A∧D∧C Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|