Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬C∧A∧(¬B∨C):
Промежуточные таблицы истинности:¬B: (¬B)∨C: B | C | ¬B | (¬B)∨C | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
¬C: (¬C)∧A: C | A | ¬C | (¬C)∧A | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬C)∧A)∧((¬B)∨C): C | A | B | ¬C | (¬C)∧A | ¬B | (¬B)∨C | ((¬C)∧A)∧((¬B)∨C) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
Общая таблица истинности:C | A | B | ¬B | (¬B)∨C | ¬C | (¬C)∧A | ¬C∧A∧(¬B∨C) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: C | A | B | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F сднф = ¬C∧A∧¬B Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: C | A | B | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F скнф = (C∨A∨B) ∧ (C∨A∨¬B) ∧ (C∨¬A∨¬B) ∧ (¬C∨A∨B) ∧ (¬C∨A∨¬B) ∧ (¬C∨¬A∨B) ∧ (¬C∨¬A∨¬B) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции C | A | B | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧C ⊕ C 010∧A ⊕ C 001∧B ⊕ C 110∧C∧A ⊕ C 101∧C∧B ⊕ C 011∧A∧B ⊕ C 111∧C∧A∧B Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 0 ⊕ 0 = 0 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 0 ⊕ 1 = 1 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = A ⊕ C∧A ⊕ A∧B ⊕ C∧A∧B Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|