Таблица истинности для функции F≡¬X∧(Y→Z)∨(W∧X):
Промежуточные таблицы истинности:
Y→Z:
W∧X:
¬X:
(¬X)∧(Y→Z):
((¬X)∧(Y→Z))∨(W∧X):
F≡(((¬X)∧(Y→Z))∨(W∧X)):
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:Fсднф = ¬F∧¬X∧Y∧¬Z∧¬W ∨ ¬F∧¬X∧Y∧¬Z∧W ∨ ¬F∧X∧¬Y∧¬Z∧¬W ∨ ¬F∧X∧¬Y∧Z∧¬W ∨ ¬F∧X∧Y∧¬Z∧¬W ∨ ¬F∧X∧Y∧Z∧¬W ∨ F∧¬X∧¬Y∧¬Z∧¬W ∨ F∧¬X∧¬Y∧¬Z∧W ∨ F∧¬X∧¬Y∧Z∧¬W ∨ F∧¬X∧¬Y∧Z∧W ∨ F∧¬X∧Y∧Z∧¬W ∨ F∧¬X∧Y∧Z∧W ∨ F∧X∧¬Y∧¬Z∧W ∨ F∧X∧¬Y∧Z∧W ∨ F∧X∧Y∧¬Z∧W ∨ F∧X∧Y∧Z∧W
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:Fскнф = (F∨X∨Y∨Z∨W) ∧ (F∨X∨Y∨Z∨¬W) ∧ (F∨X∨Y∨¬Z∨W) ∧ (F∨X∨Y∨¬Z∨¬W) ∧ (F∨X∨¬Y∨¬Z∨W) ∧ (F∨X∨¬Y∨¬Z∨¬W) ∧ (F∨¬X∨Y∨Z∨¬W) ∧ (F∨¬X∨Y∨¬Z∨¬W) ∧ (F∨¬X∨¬Y∨Z∨¬W) ∧ (F∨¬X∨¬Y∨¬Z∨¬W) ∧ (¬F∨X∨¬Y∨Z∨W) ∧ (¬F∨X∨¬Y∨Z∨¬W) ∧ (¬F∨¬X∨Y∨Z∨W) ∧ (¬F∨¬X∨Y∨¬Z∨W) ∧ (¬F∨¬X∨¬Y∨Z∨W) ∧ (¬F∨¬X∨¬Y∨¬Z∨W)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧X ⊕ C00100∧Y ⊕ C00010∧Z ⊕ C00001∧W ⊕ C11000∧F∧X ⊕ C10100∧F∧Y ⊕ C10010∧F∧Z ⊕ C10001∧F∧W ⊕ C01100∧X∧Y ⊕ C01010∧X∧Z ⊕ C01001∧X∧W ⊕ C00110∧Y∧Z ⊕ C00101∧Y∧W ⊕ C00011∧Z∧W ⊕ C11100∧F∧X∧Y ⊕ C11010∧F∧X∧Z ⊕ C11001∧F∧X∧W ⊕ C10110∧F∧Y∧Z ⊕ C10101∧F∧Y∧W ⊕ C10011∧F∧Z∧W ⊕ C01110∧X∧Y∧Z ⊕ C01101∧X∧Y∧W ⊕ C01011∧X∧Z∧W ⊕ C00111∧Y∧Z∧W ⊕ C11110∧F∧X∧Y∧Z ⊕ C11101∧F∧X∧Y∧W ⊕ C11011∧F∧X∧Z∧W ⊕ C10111∧F∧Y∧Z∧W ⊕ C01111∧X∧Y∧Z∧W ⊕ C11111∧F∧X∧Y∧Z∧W
Так как Fж(00000) = 0, то С00000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 1 => С10000 = 0 ⊕ 1 = 1
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 0 ⊕ 1 = 1
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 0 ⊕ 1 = 1
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 1 => С01100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 1 => С11101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 1 => С11011 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
Fж = F ⊕ X ⊕ Y ⊕ X∧Y ⊕ X∧W ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина: