Таблица истинности для функции F≡¬X∧(Y→Z)∨(W∧X):


Промежуточные таблицы истинности:
Y→Z:
YZY→Z
001
011
100
111

W∧X:
WXW∧X
000
010
100
111

¬X:
X¬X
01
10

(¬X)∧(Y→Z):
XYZ¬XY→Z(¬X)∧(Y→Z)
000111
001111
010100
011111
100010
101010
110000
111010

((¬X)∧(Y→Z))∨(W∧X):
XYZW¬XY→Z(¬X)∧(Y→Z)W∧X((¬X)∧(Y→Z))∨(W∧X)
000011101
000111101
001011101
001111101
010010000
010110000
011011101
011111101
100001000
100101011
101001000
101101011
110000000
110100011
111001000
111101011

F≡(((¬X)∧(Y→Z))∨(W∧X)):
FXYZW¬XY→Z(¬X)∧(Y→Z)W∧X((¬X)∧(Y→Z))∨(W∧X)F≡(((¬X)∧(Y→Z))∨(W∧X))
00000111010
00001111010
00010111010
00011111010
00100100001
00101100001
00110111010
00111111010
01000010001
01001010110
01010010001
01011010110
01100000001
01101000110
01110010001
01111010110
10000111011
10001111011
10010111011
10011111011
10100100000
10101100000
10110111011
10111111011
11000010000
11001010111
11010010000
11011010111
11100000000
11101000111
11110010000
11111010111

Общая таблица истинности:

FXYZWY→ZW∧X¬X(¬X)∧(Y→Z)((¬X)∧(Y→Z))∨(W∧X)F≡¬X∧(Y→Z)∨(W∧X)
00000101110
00001101110
00010101110
00011101110
00100001001
00101001001
00110101110
00111101110
01000100001
01001110010
01010100001
01011110010
01100000001
01101010010
01110100001
01111110010
10000101111
10001101111
10010101111
10011101111
10100001000
10101001000
10110101111
10111101111
11000100000
11001110011
11010100000
11011110011
11100000000
11101010011
11110100000
11111110011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FXYZWF
000000
000010
000100
000110
001001
001011
001100
001110
010001
010010
010101
010110
011001
011010
011101
011110
100001
100011
100101
100111
101000
101010
101101
101111
110000
110011
110100
110111
111000
111011
111100
111111
Fсднф = ¬F∧¬X∧Y∧¬Z∧¬W ∨ ¬F∧¬X∧Y∧¬Z∧W ∨ ¬F∧X∧¬Y∧¬Z∧¬W ∨ ¬F∧X∧¬Y∧Z∧¬W ∨ ¬F∧X∧Y∧¬Z∧¬W ∨ ¬F∧X∧Y∧Z∧¬W ∨ F∧¬X∧¬Y∧¬Z∧¬W ∨ F∧¬X∧¬Y∧¬Z∧W ∨ F∧¬X∧¬Y∧Z∧¬W ∨ F∧¬X∧¬Y∧Z∧W ∨ F∧¬X∧Y∧Z∧¬W ∨ F∧¬X∧Y∧Z∧W ∨ F∧X∧¬Y∧¬Z∧W ∨ F∧X∧¬Y∧Z∧W ∨ F∧X∧Y∧¬Z∧W ∨ F∧X∧Y∧Z∧W
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FXYZWF
000000
000010
000100
000110
001001
001011
001100
001110
010001
010010
010101
010110
011001
011010
011101
011110
100001
100011
100101
100111
101000
101010
101101
101111
110000
110011
110100
110111
111000
111011
111100
111111
Fскнф = (F∨X∨Y∨Z∨W) ∧ (F∨X∨Y∨Z∨¬W) ∧ (F∨X∨Y∨¬Z∨W) ∧ (F∨X∨Y∨¬Z∨¬W) ∧ (F∨X∨¬Y∨¬Z∨W) ∧ (F∨X∨¬Y∨¬Z∨¬W) ∧ (F∨¬X∨Y∨Z∨¬W) ∧ (F∨¬X∨Y∨¬Z∨¬W) ∧ (F∨¬X∨¬Y∨Z∨¬W) ∧ (F∨¬X∨¬Y∨¬Z∨¬W) ∧ (¬F∨X∨¬Y∨Z∨W) ∧ (¬F∨X∨¬Y∨Z∨¬W) ∧ (¬F∨¬X∨Y∨Z∨W) ∧ (¬F∨¬X∨Y∨¬Z∨W) ∧ (¬F∨¬X∨¬Y∨Z∨W) ∧ (¬F∨¬X∨¬Y∨¬Z∨W)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FXYZWFж
000000
000010
000100
000110
001001
001011
001100
001110
010001
010010
010101
010110
011001
011010
011101
011110
100001
100011
100101
100111
101000
101010
101101
101111
110000
110011
110100
110111
111000
111011
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧X ⊕ C00100∧Y ⊕ C00010∧Z ⊕ C00001∧W ⊕ C11000∧F∧X ⊕ C10100∧F∧Y ⊕ C10010∧F∧Z ⊕ C10001∧F∧W ⊕ C01100∧X∧Y ⊕ C01010∧X∧Z ⊕ C01001∧X∧W ⊕ C00110∧Y∧Z ⊕ C00101∧Y∧W ⊕ C00011∧Z∧W ⊕ C11100∧F∧X∧Y ⊕ C11010∧F∧X∧Z ⊕ C11001∧F∧X∧W ⊕ C10110∧F∧Y∧Z ⊕ C10101∧F∧Y∧W ⊕ C10011∧F∧Z∧W ⊕ C01110∧X∧Y∧Z ⊕ C01101∧X∧Y∧W ⊕ C01011∧X∧Z∧W ⊕ C00111∧Y∧Z∧W ⊕ C11110∧F∧X∧Y∧Z ⊕ C11101∧F∧X∧Y∧W ⊕ C11011∧F∧X∧Z∧W ⊕ C10111∧F∧Y∧Z∧W ⊕ C01111∧X∧Y∧Z∧W ⊕ C11111∧F∧X∧Y∧Z∧W

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 1 => С10000 = 0 ⊕ 1 = 1
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 0 ⊕ 1 = 1
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 0 ⊕ 1 = 1
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 1 => С01100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 1 => С11101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 1 => С11011 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = F ⊕ X ⊕ Y ⊕ X∧Y ⊕ X∧W ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина: