Таблица истинности для функции (¬X⊕¬Y)≡(¬X∨Z):


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

¬Y:
Y¬Y
01
10

(¬X)⊕(¬Y):
XY¬X¬Y(¬X)⊕(¬Y)
00110
01101
10011
11000

(¬X)∨Z:
XZ¬X(¬X)∨Z
0011
0111
1000
1101

((¬X)⊕(¬Y))≡((¬X)∨Z):
XYZ¬X¬Y(¬X)⊕(¬Y)¬X(¬X)∨Z((¬X)⊕(¬Y))≡((¬X)∨Z)
000110110
001110110
010101111
011101111
100011000
101011011
110000001
111000010

Общая таблица истинности:

XYZ¬X¬Y(¬X)⊕(¬Y)(¬X)∨Z(¬X⊕¬Y)≡(¬X∨Z)
00011010
00111010
01010111
01110111
10001100
10101111
11000001
11100010

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0010
0101
0111
1000
1011
1101
1110
Fсднф = ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0010
0101
0111
1000
1011
1101
1110
Fскнф = (X∨Y∨Z) ∧ (X∨Y∨¬Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0010
0101
0111
1000
1011
1101
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = Y ⊕ X∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы