Таблица истинности для функции F≡(X1∧X2)∧¬(X3⊕X4):


Промежуточные таблицы истинности:
X1∧X2:
X1X2X1∧X2
000
010
100
111

X3⊕X4:
X3X4X3⊕X4
000
011
101
110

¬(X3⊕X4):
X3X4X3⊕X4¬(X3⊕X4)
0001
0110
1010
1101

(X1∧X2)∧(¬(X3⊕X4)):
X1X2X3X4X1∧X2X3⊕X4¬(X3⊕X4)(X1∧X2)∧(¬(X3⊕X4))
00000010
00010100
00100100
00110010
01000010
01010100
01100100
01110010
10000010
10010100
10100100
10110010
11001011
11011100
11101100
11111011

F≡((X1∧X2)∧(¬(X3⊕X4))):
FX1X2X3X4X1∧X2X3⊕X4¬(X3⊕X4)(X1∧X2)∧(¬(X3⊕X4))F≡((X1∧X2)∧(¬(X3⊕X4)))
0000000101
0000101001
0001001001
0001100101
0010000101
0010101001
0011001001
0011100101
0100000101
0100101001
0101001001
0101100101
0110010110
0110111001
0111011001
0111110110
1000000100
1000101000
1001001000
1001100100
1010000100
1010101000
1011001000
1011100100
1100000100
1100101000
1101001000
1101100100
1110010111
1110111000
1111011000
1111110111

Общая таблица истинности:

FX1X2X3X4X1∧X2X3⊕X4¬(X3⊕X4)(X1∧X2)∧(¬(X3⊕X4))F≡(X1∧X2)∧¬(X3⊕X4)
0000000101
0000101001
0001001001
0001100101
0010000101
0010101001
0011001001
0011100101
0100000101
0100101001
0101001001
0101100101
0110010110
0110111001
0111011001
0111110110
1000000100
1000101000
1001001000
1001100100
1010000100
1010101000
1011001000
1011100100
1100000100
1100101000
1101001000
1101100100
1110010111
1110111000
1111011000
1111110111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FX1X2X3X4F
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011000
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111001
111010
111100
111111
Fсднф = ¬F∧¬X1∧¬X2∧¬X3∧¬X4 ∨ ¬F∧¬X1∧¬X2∧¬X3∧X4 ∨ ¬F∧¬X1∧¬X2∧X3∧¬X4 ∨ ¬F∧¬X1∧¬X2∧X3∧X4 ∨ ¬F∧¬X1∧X2∧¬X3∧¬X4 ∨ ¬F∧¬X1∧X2∧¬X3∧X4 ∨ ¬F∧¬X1∧X2∧X3∧¬X4 ∨ ¬F∧¬X1∧X2∧X3∧X4 ∨ ¬F∧X1∧¬X2∧¬X3∧¬X4 ∨ ¬F∧X1∧¬X2∧¬X3∧X4 ∨ ¬F∧X1∧¬X2∧X3∧¬X4 ∨ ¬F∧X1∧¬X2∧X3∧X4 ∨ ¬F∧X1∧X2∧¬X3∧X4 ∨ ¬F∧X1∧X2∧X3∧¬X4 ∨ F∧X1∧X2∧¬X3∧¬X4 ∨ F∧X1∧X2∧X3∧X4
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FX1X2X3X4F
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011000
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111001
111010
111100
111111
Fскнф = (F∨¬X1∨¬X2∨X3∨X4) ∧ (F∨¬X1∨¬X2∨¬X3∨¬X4) ∧ (¬F∨X1∨X2∨X3∨X4) ∧ (¬F∨X1∨X2∨X3∨¬X4) ∧ (¬F∨X1∨X2∨¬X3∨X4) ∧ (¬F∨X1∨X2∨¬X3∨¬X4) ∧ (¬F∨X1∨¬X2∨X3∨X4) ∧ (¬F∨X1∨¬X2∨X3∨¬X4) ∧ (¬F∨X1∨¬X2∨¬X3∨X4) ∧ (¬F∨X1∨¬X2∨¬X3∨¬X4) ∧ (¬F∨¬X1∨X2∨X3∨X4) ∧ (¬F∨¬X1∨X2∨X3∨¬X4) ∧ (¬F∨¬X1∨X2∨¬X3∨X4) ∧ (¬F∨¬X1∨X2∨¬X3∨¬X4) ∧ (¬F∨¬X1∨¬X2∨X3∨¬X4) ∧ (¬F∨¬X1∨¬X2∨¬X3∨X4)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FX1X2X3X4Fж
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011000
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111001
111010
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧X1 ⊕ C00100∧X2 ⊕ C00010∧X3 ⊕ C00001∧X4 ⊕ C11000∧F∧X1 ⊕ C10100∧F∧X2 ⊕ C10010∧F∧X3 ⊕ C10001∧F∧X4 ⊕ C01100∧X1∧X2 ⊕ C01010∧X1∧X3 ⊕ C01001∧X1∧X4 ⊕ C00110∧X2∧X3 ⊕ C00101∧X2∧X4 ⊕ C00011∧X3∧X4 ⊕ C11100∧F∧X1∧X2 ⊕ C11010∧F∧X1∧X3 ⊕ C11001∧F∧X1∧X4 ⊕ C10110∧F∧X2∧X3 ⊕ C10101∧F∧X2∧X4 ⊕ C10011∧F∧X3∧X4 ⊕ C01110∧X1∧X2∧X3 ⊕ C01101∧X1∧X2∧X4 ⊕ C01011∧X1∧X3∧X4 ⊕ C00111∧X2∧X3∧X4 ⊕ C11110∧F∧X1∧X2∧X3 ⊕ C11101∧F∧X1∧X2∧X4 ⊕ C11011∧F∧X1∧X3∧X4 ⊕ C10111∧F∧X2∧X3∧X4 ⊕ C01111∧X1∧X2∧X3∧X4 ⊕ C11111∧F∧X1∧X2∧X3∧X4

Так как Fж(00000) = 1, то С00000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 1 ⊕ 0 = 1
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 1 ⊕ 1 = 0
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 1 ⊕ 1 = 0
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 1 ⊕ 1 = 0
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 1 ⊕ 1 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 0 => С10010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 0 => С10001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 1 => С01001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 1 => С00110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 1 => С00011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 1 => С11100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 0 => С10110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 1 => С01101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 1 => С01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 1 => С00111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F ⊕ X1∧X2 ⊕ X1∧X2∧X3 ⊕ X1∧X2∧X4
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы