Таблица истинности для функции (A→(B≡C))≡(A∧B≡A∧C):


Промежуточные таблицы истинности:
B≡C:
BCB≡C
001
010
100
111

A→(B≡C):
ABCB≡CA→(B≡C)
00011
00101
01001
01111
10011
10100
11000
11111

A∧B:
ABA∧B
000
010
100
111

A∧C:
ACA∧C
000
010
100
111

(A∧B)≡(A∧C):
ABCA∧BA∧C(A∧B)≡(A∧C)
000001
001001
010001
011001
100001
101010
110100
111111

(A→(B≡C))≡((A∧B)≡(A∧C)):
ABCB≡CA→(B≡C)A∧BA∧C(A∧B)≡(A∧C)(A→(B≡C))≡((A∧B)≡(A∧C))
000110011
001010011
010010011
011110011
100110011
101000101
110001001
111111111

Общая таблица истинности:

ABCB≡CA→(B≡C)A∧BA∧C(A∧B)≡(A∧C)(A→(B≡C))≡(A∧B≡A∧C)
000110011
001010011
010010011
011110011
100110011
101000101
110001001
111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1001
1011
1101
1111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1