Таблица истинности для функции ¬(X⊕Y)∨Z⊕W:


Промежуточные таблицы истинности:
X⊕Y:
XYX⊕Y
000
011
101
110

¬(X⊕Y):
XYX⊕Y¬(X⊕Y)
0001
0110
1010
1101

(¬(X⊕Y))∨Z:
XYZX⊕Y¬(X⊕Y)(¬(X⊕Y))∨Z
000011
001011
010100
011101
100100
101101
110011
111011

((¬(X⊕Y))∨Z)⊕W:
XYZWX⊕Y¬(X⊕Y)(¬(X⊕Y))∨Z((¬(X⊕Y))∨Z)⊕W
00000111
00010110
00100111
00110110
01001000
01011001
01101011
01111010
10001000
10011001
10101011
10111010
11000111
11010110
11100111
11110110

Общая таблица истинности:

XYZWX⊕Y¬(X⊕Y)(¬(X⊕Y))∨Z¬(X⊕Y)∨Z⊕W
00000111
00010110
00100111
00110110
01001000
01011001
01101011
01111010
10001000
10011001
10101011
10111010
11000111
11010110
11100111
11110110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZWF
00001
00010
00101
00110
01000
01011
01101
01110
10000
10011
10101
10110
11001
11010
11101
11110
Fсднф = ¬X∧¬Y∧¬Z∧¬W ∨ ¬X∧¬Y∧Z∧¬W ∨ ¬X∧Y∧¬Z∧W ∨ ¬X∧Y∧Z∧¬W ∨ X∧¬Y∧¬Z∧W ∨ X∧¬Y∧Z∧¬W ∨ X∧Y∧¬Z∧¬W ∨ X∧Y∧Z∧¬W
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZWF
00001
00010
00101
00110
01000
01011
01101
01110
10000
10011
10101
10110
11001
11010
11101
11110
Fскнф = (X∨Y∨Z∨¬W) ∧ (X∨Y∨¬Z∨¬W) ∧ (X∨¬Y∨Z∨W) ∧ (X∨¬Y∨¬Z∨¬W) ∧ (¬X∨Y∨Z∨W) ∧ (¬X∨Y∨¬Z∨¬W) ∧ (¬X∨¬Y∨Z∨¬W) ∧ (¬X∨¬Y∨¬Z∨¬W)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZWFж
00001
00010
00101
00110
01000
01011
01101
01110
10000
10011
10101
10110
11001
11010
11101
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧X ⊕ C0100∧Y ⊕ C0010∧Z ⊕ C0001∧W ⊕ C1100∧X∧Y ⊕ C1010∧X∧Z ⊕ C1001∧X∧W ⊕ C0110∧Y∧Z ⊕ C0101∧Y∧W ⊕ C0011∧Z∧W ⊕ C1110∧X∧Y∧Z ⊕ C1101∧X∧Y∧W ⊕ C1011∧X∧Z∧W ⊕ C0111∧Y∧Z∧W ⊕ C1111∧X∧Y∧Z∧W

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 1 ⊕ 0 = 1
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Y ⊕ W ⊕ X∧Z ⊕ Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы