Таблица истинности для функции ¬X∧¬Y∧Z∨¬X∧Y∧¬Z∨¬X∧Y∧Z∨X∧¬Y∧Z∨X∧Y∧Z:
Промежуточные таблицы истинности:¬X:
¬Y:
¬Z:
(¬X)∧(¬Y):
| X | Y | ¬X | ¬Y | (¬X)∧(¬Y) |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
((¬X)∧(¬Y))∧Z:
| X | Y | Z | ¬X | ¬Y | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 |
(¬X)∧Y:
| X | Y | ¬X | (¬X)∧Y |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |
((¬X)∧Y)∧(¬Z):
| X | Y | Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 |
((¬X)∧Y)∧Z:
| X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
X∧(¬Y):
| X | Y | ¬Y | X∧(¬Y) |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
(X∧(¬Y))∧Z:
| X | Y | Z | ¬Y | X∧(¬Y) | (X∧(¬Y))∧Z |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
X∧Y:
(X∧Y)∧Z:
| X | Y | Z | X∧Y | (X∧Y)∧Z |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |
(((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)):
| X | Y | Z | ¬X | ¬Y | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | (((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)) |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z):
| X | Y | Z | ¬X | ¬Y | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | (((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)) | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z) |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z):
| X | Y | Z | ¬X | ¬Y | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | (((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)) | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z) | ¬Y | X∧(¬Y) | (X∧(¬Y))∧Z | (((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z) |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z))∨((X∧Y)∧Z):
| X | Y | Z | ¬X | ¬Y | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | (((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)) | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z) | ¬Y | X∧(¬Y) | (X∧(¬Y))∧Z | (((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z) | X∧Y | (X∧Y)∧Z | ((((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z))∨((X∧Y)∧Z) |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Общая таблица истинности:
| X | Y | Z | ¬X | ¬Y | ¬Z | (¬X)∧(¬Y) | ((¬X)∧(¬Y))∧Z | (¬X)∧Y | ((¬X)∧Y)∧(¬Z) | ((¬X)∧Y)∧Z | X∧(¬Y) | (X∧(¬Y))∧Z | X∧Y | (X∧Y)∧Z | (((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)) | ((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z) | (((((¬X)∧(¬Y))∧Z)∨(((¬X)∧Y)∧(¬Z)))∨(((¬X)∧Y)∧Z))∨((X∧(¬Y))∧Z) | ¬X∧¬Y∧Z∨¬X∧Y∧¬Z∨¬X∧Y∧Z∨X∧¬Y∧Z∨X∧Y∧Z |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
| X | Y | Z | F |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
F
сднф = ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧Z
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
| X | Y | Z | F |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
F
скнф = (X∨Y∨Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨Z)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
| X | Y | Z | Fж |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
000 ⊕ C
100∧X ⊕ C
010∧Y ⊕ C
001∧Z ⊕ C
110∧X∧Y ⊕ C
101∧X∧Z ⊕ C
011∧Y∧Z ⊕ C
111∧X∧Y∧Z
Так как F
ж(000) = 0, то С
000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(100) = С
000 ⊕ С
100 = 0 => С
100 = 0 ⊕ 0 = 0
F
ж(010) = С
000 ⊕ С
010 = 1 => С
010 = 0 ⊕ 1 = 1
F
ж(001) = С
000 ⊕ С
001 = 1 => С
001 = 0 ⊕ 1 = 1
F
ж(110) = С
000 ⊕ С
100 ⊕ С
010 ⊕ С
110 = 0 => С
110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
F
ж(101) = С
000 ⊕ С
100 ⊕ С
001 ⊕ С
101 = 1 => С
101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(011) = С
000 ⊕ С
010 ⊕ С
001 ⊕ С
011 = 1 => С
011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
F
ж(111) = С
000 ⊕ С
100 ⊕ С
010 ⊕ С
001 ⊕ С
110 ⊕ С
101 ⊕ С
011 ⊕ С
111 = 1 => С
111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
F
ж = Y ⊕ Z ⊕ X∧Y ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина: