Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (X∧¬Y⊕Z)→(¬X∧Z↓Y):
Общая таблица истинности:X | Y | Z | ¬Y | X∧(¬Y) | (X∧(¬Y))⊕Z | ¬X | Z↓Y | (¬X)∧(Z↓Y) | (X∧¬Y⊕Z)→(¬X∧Z↓Y) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X∧¬Y∧¬Z ∨ ¬X∧Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (X∨Y∨¬Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨¬Z)
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|