Таблица истинности для функции ((B∧A)∧R∧(B∧C∧A))∧¬(A∧E∧C∨B):


Промежуточные таблицы истинности:
B∧A:
BAB∧A
000
010
100
111

B∧C:
BCB∧C
000
010
100
111

(B∧C)∧A:
BCAB∧C(B∧C)∧A
00000
00100
01000
01100
10000
10100
11010
11111

(B∧A)∧R:
BARB∧A(B∧A)∧R
00000
00100
01000
01100
10000
10100
11010
11111

((B∧A)∧R)∧((B∧C)∧A):
BARCB∧A(B∧A)∧RB∧C(B∧C)∧A((B∧A)∧R)∧((B∧C)∧A)
000000000
000100000
001000000
001100000
010000000
010100000
011000000
011100000
100000000
100100100
101000000
101100100
110010000
110110110
111011000
111111111

A∧E:
AEA∧E
000
010
100
111

(A∧E)∧C:
AECA∧E(A∧E)∧C
00000
00100
01000
01100
10000
10100
11010
11111

((A∧E)∧C)∨B:
AECBA∧E(A∧E)∧C((A∧E)∧C)∨B
0000000
0001001
0010000
0011001
0100000
0101001
0110000
0111001
1000000
1001001
1010000
1011001
1100100
1101101
1110111
1111111

¬(((A∧E)∧C)∨B):
AECBA∧E(A∧E)∧C((A∧E)∧C)∨B¬(((A∧E)∧C)∨B)
00000001
00010010
00100001
00110010
01000001
01010010
01100001
01110010
10000001
10010010
10100001
10110010
11001001
11011010
11101110
11111110

(((B∧A)∧R)∧((B∧C)∧A))∧(¬(((A∧E)∧C)∨B)):
BARCEB∧A(B∧A)∧RB∧C(B∧C)∧A((B∧A)∧R)∧((B∧C)∧A)A∧E(A∧E)∧C((A∧E)∧C)∨B¬(((A∧E)∧C)∨B)(((B∧A)∧R)∧((B∧C)∧A))∧(¬(((A∧E)∧C)∨B))
000000000000010
000010000000010
000100000000010
000110000000010
001000000000010
001010000000010
001100000000010
001110000000010
010000000000010
010010000010010
010100000000010
010110000011100
011000000000010
011010000010010
011100000000010
011110000011100
100000000000100
100010000000100
100100010000100
100110010000100
101000000000100
101010000000100
101100010000100
101110010000100
110001000000100
110011000010100
110101011000100
110111011011100
111001100000100
111011100010100
111101111100100
111111111111100

Общая таблица истинности:

BARCEB∧AB∧C(B∧C)∧A(B∧A)∧R((B∧A)∧R)∧((B∧C)∧A)A∧E(A∧E)∧C((A∧E)∧C)∨B¬(((A∧E)∧C)∨B)((B∧A)∧R∧(B∧C∧A))∧¬(A∧E∧C∨B)
000000000000010
000010000000010
000100000000010
000110000000010
001000000000010
001010000000010
001100000000010
001110000000010
010000000000010
010010000010010
010100000000010
010110000011100
011000000000010
011010000010010
011100000000010
011110000011100
100000000000100
100010000000100
100100100000100
100110100000100
101000000000100
101010000000100
101100100000100
101110100000100
110001000000100
110011000010100
110101110000100
110111110011100
111001001000100
111011001010100
111101111100100
111111111111100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
BARCEF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
BARCEF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111110
Fскнф = (B∨A∨R∨C∨E) ∧ (B∨A∨R∨C∨¬E) ∧ (B∨A∨R∨¬C∨E) ∧ (B∨A∨R∨¬C∨¬E) ∧ (B∨A∨¬R∨C∨E) ∧ (B∨A∨¬R∨C∨¬E) ∧ (B∨A∨¬R∨¬C∨E) ∧ (B∨A∨¬R∨¬C∨¬E) ∧ (B∨¬A∨R∨C∨E) ∧ (B∨¬A∨R∨C∨¬E) ∧ (B∨¬A∨R∨¬C∨E) ∧ (B∨¬A∨R∨¬C∨¬E) ∧ (B∨¬A∨¬R∨C∨E) ∧ (B∨¬A∨¬R∨C∨¬E) ∧ (B∨¬A∨¬R∨¬C∨E) ∧ (B∨¬A∨¬R∨¬C∨¬E) ∧ (¬B∨A∨R∨C∨E) ∧ (¬B∨A∨R∨C∨¬E) ∧ (¬B∨A∨R∨¬C∨E) ∧ (¬B∨A∨R∨¬C∨¬E) ∧ (¬B∨A∨¬R∨C∨E) ∧ (¬B∨A∨¬R∨C∨¬E) ∧ (¬B∨A∨¬R∨¬C∨E) ∧ (¬B∨A∨¬R∨¬C∨¬E) ∧ (¬B∨¬A∨R∨C∨E) ∧ (¬B∨¬A∨R∨C∨¬E) ∧ (¬B∨¬A∨R∨¬C∨E) ∧ (¬B∨¬A∨R∨¬C∨¬E) ∧ (¬B∨¬A∨¬R∨C∨E) ∧ (¬B∨¬A∨¬R∨C∨¬E) ∧ (¬B∨¬A∨¬R∨¬C∨E) ∧ (¬B∨¬A∨¬R∨¬C∨¬E)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
BARCEFж
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111110

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧B ⊕ C01000∧A ⊕ C00100∧R ⊕ C00010∧C ⊕ C00001∧E ⊕ C11000∧B∧A ⊕ C10100∧B∧R ⊕ C10010∧B∧C ⊕ C10001∧B∧E ⊕ C01100∧A∧R ⊕ C01010∧A∧C ⊕ C01001∧A∧E ⊕ C00110∧R∧C ⊕ C00101∧R∧E ⊕ C00011∧C∧E ⊕ C11100∧B∧A∧R ⊕ C11010∧B∧A∧C ⊕ C11001∧B∧A∧E ⊕ C10110∧B∧R∧C ⊕ C10101∧B∧R∧E ⊕ C10011∧B∧C∧E ⊕ C01110∧A∧R∧C ⊕ C01101∧A∧R∧E ⊕ C01011∧A∧C∧E ⊕ C00111∧R∧C∧E ⊕ C11110∧B∧A∧R∧C ⊕ C11101∧B∧A∧R∧E ⊕ C11011∧B∧A∧C∧E ⊕ C10111∧B∧R∧C∧E ⊕ C01111∧A∧R∧C∧E ⊕ C11111∧B∧A∧R∧C∧E

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 0 ⊕ 0 = 0
Fж(01000) = С00000 ⊕ С01000 = 0 => С01000 = 0 ⊕ 0 = 0
Fж(00100) = С00000 ⊕ С00100 = 0 => С00100 = 0 ⊕ 0 = 0
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 0 => С10010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 0 => С10001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 0 => С01010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 0 => С00101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 0 => С10110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 0 => С11111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы