Промежуточные таблицы истинности:B∧A:
B∧C:
(B∧C)∧A:
B | C | A | B∧C | (B∧C)∧A |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
(B∧A)∧R:
B | A | R | B∧A | (B∧A)∧R |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
((B∧A)∧R)∧((B∧C)∧A):
B | A | R | C | B∧A | (B∧A)∧R | B∧C | (B∧C)∧A | ((B∧A)∧R)∧((B∧C)∧A) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A∧E:
(A∧E)∧C:
A | E | C | A∧E | (A∧E)∧C |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
((A∧E)∧C)∨B:
A | E | C | B | A∧E | (A∧E)∧C | ((A∧E)∧C)∨B |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
¬(((A∧E)∧C)∨B):
A | E | C | B | A∧E | (A∧E)∧C | ((A∧E)∧C)∨B | ¬(((A∧E)∧C)∨B) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
(((B∧A)∧R)∧((B∧C)∧A))∧(¬(((A∧E)∧C)∨B)):
B | A | R | C | E | B∧A | (B∧A)∧R | B∧C | (B∧C)∧A | ((B∧A)∧R)∧((B∧C)∧A) | A∧E | (A∧E)∧C | ((A∧E)∧C)∨B | ¬(((A∧E)∧C)∨B) | (((B∧A)∧R)∧((B∧C)∧A))∧(¬(((A∧E)∧C)∨B)) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Общая таблица истинности:
B | A | R | C | E | B∧A | B∧C | (B∧C)∧A | (B∧A)∧R | ((B∧A)∧R)∧((B∧C)∧A) | A∧E | (A∧E)∧C | ((A∧E)∧C)∨B | ¬(((A∧E)∧C)∨B) | ((B∧A)∧R∧(B∧C∧A))∧¬(A∧E∧C∨B) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
B | A | R | C | E | F |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 |
В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
B | A | R | C | E | F |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 |
F
скнф = (B∨A∨R∨C∨E) ∧ (B∨A∨R∨C∨¬E) ∧ (B∨A∨R∨¬C∨E) ∧ (B∨A∨R∨¬C∨¬E) ∧ (B∨A∨¬R∨C∨E) ∧ (B∨A∨¬R∨C∨¬E) ∧ (B∨A∨¬R∨¬C∨E) ∧ (B∨A∨¬R∨¬C∨¬E) ∧ (B∨¬A∨R∨C∨E) ∧ (B∨¬A∨R∨C∨¬E) ∧ (B∨¬A∨R∨¬C∨E) ∧ (B∨¬A∨R∨¬C∨¬E) ∧ (B∨¬A∨¬R∨C∨E) ∧ (B∨¬A∨¬R∨C∨¬E) ∧ (B∨¬A∨¬R∨¬C∨E) ∧ (B∨¬A∨¬R∨¬C∨¬E) ∧ (¬B∨A∨R∨C∨E) ∧ (¬B∨A∨R∨C∨¬E) ∧ (¬B∨A∨R∨¬C∨E) ∧ (¬B∨A∨R∨¬C∨¬E) ∧ (¬B∨A∨¬R∨C∨E) ∧ (¬B∨A∨¬R∨C∨¬E) ∧ (¬B∨A∨¬R∨¬C∨E) ∧ (¬B∨A∨¬R∨¬C∨¬E) ∧ (¬B∨¬A∨R∨C∨E) ∧ (¬B∨¬A∨R∨C∨¬E) ∧ (¬B∨¬A∨R∨¬C∨E) ∧ (¬B∨¬A∨R∨¬C∨¬E) ∧ (¬B∨¬A∨¬R∨C∨E) ∧ (¬B∨¬A∨¬R∨C∨¬E) ∧ (¬B∨¬A∨¬R∨¬C∨E) ∧ (¬B∨¬A∨¬R∨¬C∨¬E)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
B | A | R | C | E | Fж |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина:
F
ж = C
00000 ⊕ C
10000∧B ⊕ C
01000∧A ⊕ C
00100∧R ⊕ C
00010∧C ⊕ C
00001∧E ⊕ C
11000∧B∧A ⊕ C
10100∧B∧R ⊕ C
10010∧B∧C ⊕ C
10001∧B∧E ⊕ C
01100∧A∧R ⊕ C
01010∧A∧C ⊕ C
01001∧A∧E ⊕ C
00110∧R∧C ⊕ C
00101∧R∧E ⊕ C
00011∧C∧E ⊕ C
11100∧B∧A∧R ⊕ C
11010∧B∧A∧C ⊕ C
11001∧B∧A∧E ⊕ C
10110∧B∧R∧C ⊕ C
10101∧B∧R∧E ⊕ C
10011∧B∧C∧E ⊕ C
01110∧A∧R∧C ⊕ C
01101∧A∧R∧E ⊕ C
01011∧A∧C∧E ⊕ C
00111∧R∧C∧E ⊕ C
11110∧B∧A∧R∧C ⊕ C
11101∧B∧A∧R∧E ⊕ C
11011∧B∧A∧C∧E ⊕ C
10111∧B∧R∧C∧E ⊕ C
01111∧A∧R∧C∧E ⊕ C
11111∧B∧A∧R∧C∧E
Так как F
ж(00000) = 0, то С
00000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(10000) = С
00000 ⊕ С
10000 = 0 => С
10000 = 0 ⊕ 0 = 0
F
ж(01000) = С
00000 ⊕ С
01000 = 0 => С
01000 = 0 ⊕ 0 = 0
F
ж(00100) = С
00000 ⊕ С
00100 = 0 => С
00100 = 0 ⊕ 0 = 0
F
ж(00010) = С
00000 ⊕ С
00010 = 0 => С
00010 = 0 ⊕ 0 = 0
F
ж(00001) = С
00000 ⊕ С
00001 = 0 => С
00001 = 0 ⊕ 0 = 0
F
ж(11000) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
11000 = 0 => С
11000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10100) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
10100 = 0 => С
10100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10010) = С
00000 ⊕ С
10000 ⊕ С
00010 ⊕ С
10010 = 0 => С
10010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10001) = С
00000 ⊕ С
10000 ⊕ С
00001 ⊕ С
10001 = 0 => С
10001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01100) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
01100 = 0 => С
01100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01010) = С
00000 ⊕ С
01000 ⊕ С
00010 ⊕ С
01010 = 0 => С
01010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01001) = С
00000 ⊕ С
01000 ⊕ С
00001 ⊕ С
01001 = 0 => С
01001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(00110) = С
00000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00110 = 0 => С
00110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(00101) = С
00000 ⊕ С
00100 ⊕ С
00001 ⊕ С
00101 = 0 => С
00101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(00011) = С
00000 ⊕ С
00010 ⊕ С
00001 ⊕ С
00011 = 0 => С
00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11100) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
11000 ⊕ С
10100 ⊕ С
01100 ⊕ С
11100 = 0 => С
11100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11010) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00010 ⊕ С
11000 ⊕ С
10010 ⊕ С
01010 ⊕ С
11010 = 0 => С
11010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11001) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00001 ⊕ С
11000 ⊕ С
10001 ⊕ С
01001 ⊕ С
11001 = 0 => С
11001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10110) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00010 ⊕ С
10100 ⊕ С
10010 ⊕ С
00110 ⊕ С
10110 = 0 => С
10110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10101) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00001 ⊕ С
10100 ⊕ С
10001 ⊕ С
00101 ⊕ С
10101 = 0 => С
10101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10011) = С
00000 ⊕ С
10000 ⊕ С
00010 ⊕ С
00001 ⊕ С
10010 ⊕ С
10001 ⊕ С
00011 ⊕ С
10011 = 0 => С
10011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01110) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
01100 ⊕ С
01010 ⊕ С
00110 ⊕ С
01110 = 0 => С
01110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01101) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00001 ⊕ С
01100 ⊕ С
01001 ⊕ С
00101 ⊕ С
01101 = 0 => С
01101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01011) = С
00000 ⊕ С
01000 ⊕ С
00010 ⊕ С
00001 ⊕ С
01010 ⊕ С
01001 ⊕ С
00011 ⊕ С
01011 = 0 => С
01011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(00111) = С
00000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
00111 = 0 => С
00111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11110) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
11000 ⊕ С
10100 ⊕ С
10010 ⊕ С
01100 ⊕ С
01010 ⊕ С
00110 ⊕ С
11100 ⊕ С
11010 ⊕ С
10110 ⊕ С
01110 ⊕ С
11110 = 0 => С
11110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11101) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00001 ⊕ С
11000 ⊕ С
10100 ⊕ С
10001 ⊕ С
01100 ⊕ С
01001 ⊕ С
00101 ⊕ С
11100 ⊕ С
11001 ⊕ С
10101 ⊕ С
01101 ⊕ С
11101 = 0 => С
11101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11011) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00010 ⊕ С
00001 ⊕ С
11000 ⊕ С
10010 ⊕ С
10001 ⊕ С
01010 ⊕ С
01001 ⊕ С
00011 ⊕ С
11010 ⊕ С
11001 ⊕ С
10011 ⊕ С
01011 ⊕ С
11011 = 0 => С
11011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10111) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
10100 ⊕ С
10010 ⊕ С
10001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
10110 ⊕ С
10101 ⊕ С
10011 ⊕ С
00111 ⊕ С
10111 = 0 => С
10111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(01111) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
01100 ⊕ С
01010 ⊕ С
01001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
01110 ⊕ С
01101 ⊕ С
01011 ⊕ С
00111 ⊕ С
01111 = 0 => С
01111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11111) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
11000 ⊕ С
10100 ⊕ С
10010 ⊕ С
10001 ⊕ С
01100 ⊕ С
01010 ⊕ С
01001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
11100 ⊕ С
11010 ⊕ С
11001 ⊕ С
10110 ⊕ С
10101 ⊕ С
10011 ⊕ С
01110 ⊕ С
01101 ⊕ С
01011 ⊕ С
00111 ⊕ С
11110 ⊕ С
11101 ⊕ С
11011 ⊕ С
10111 ⊕ С
01111 ⊕ С
11111 = 0 => С
11111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Таким образом, полином Жегалкина будет равен:
F
ж = 0