Таблица истинности для функции F∧(X∧Y)≡¬A∧¬B∨A∧B:


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

¬A:
A¬A
01
10

¬B:
B¬B
01
10

F∧(X∧Y):
FXYX∧YF∧(X∧Y)
00000
00100
01000
01110
10000
10100
11000
11111

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

A∧B:
ABA∧B
000
010
100
111

((¬A)∧(¬B))∨(A∧B):
AB¬A¬B(¬A)∧(¬B)A∧B((¬A)∧(¬B))∨(A∧B)
0011101
0110000
1001000
1100011

(F∧(X∧Y))≡(((¬A)∧(¬B))∨(A∧B)):
FXYABX∧YF∧(X∧Y)¬A¬B(¬A)∧(¬B)A∧B((¬A)∧(¬B))∨(A∧B)(F∧(X∧Y))≡(((¬A)∧(¬B))∨(A∧B))
0000000111010
0000100100001
0001000010001
0001100000110
0010000111010
0010100100001
0011000010001
0011100000110
0100000111010
0100100100001
0101000010001
0101100000110
0110010111010
0110110100001
0111010010001
0111110000110
1000000111010
1000100100001
1001000010001
1001100000110
1010000111010
1010100100001
1011000010001
1011100000110
1100000111010
1100100100001
1101000010001
1101100000110
1110011111011
1110111100000
1111011010000
1111111000111

Общая таблица истинности:

FXYABX∧Y¬A¬BF∧(X∧Y)(¬A)∧(¬B)A∧B((¬A)∧(¬B))∨(A∧B)F∧(X∧Y)≡¬A∧¬B∨A∧B
0000001101010
0000101000001
0001000100001
0001100000110
0010001101010
0010101000001
0011000100001
0011100000110
0100001101010
0100101000001
0101000100001
0101100000110
0110011101010
0110111000001
0111010100001
0111110000110
1000001101010
1000101000001
1001000100001
1001100000110
1010001101010
1010101000001
1011000100001
1011100000110
1100001101010
1100101000001
1101000100001
1101100000110
1110011111011
1110111010000
1111010110000
1111110010111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FXYABF
000000
000011
000101
000110
001000
001011
001101
001110
010000
010011
010101
010110
011000
011011
011101
011110
100000
100011
100101
100110
101000
101011
101101
101110
110000
110011
110101
110110
111001
111010
111100
111111
Fсднф = ¬F∧¬X∧¬Y∧¬A∧B ∨ ¬F∧¬X∧¬Y∧A∧¬B ∨ ¬F∧¬X∧Y∧¬A∧B ∨ ¬F∧¬X∧Y∧A∧¬B ∨ ¬F∧X∧¬Y∧¬A∧B ∨ ¬F∧X∧¬Y∧A∧¬B ∨ ¬F∧X∧Y∧¬A∧B ∨ ¬F∧X∧Y∧A∧¬B ∨ F∧¬X∧¬Y∧¬A∧B ∨ F∧¬X∧¬Y∧A∧¬B ∨ F∧¬X∧Y∧¬A∧B ∨ F∧¬X∧Y∧A∧¬B ∨ F∧X∧¬Y∧¬A∧B ∨ F∧X∧¬Y∧A∧¬B ∨ F∧X∧Y∧¬A∧¬B ∨ F∧X∧Y∧A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FXYABF
000000
000011
000101
000110
001000
001011
001101
001110
010000
010011
010101
010110
011000
011011
011101
011110
100000
100011
100101
100110
101000
101011
101101
101110
110000
110011
110101
110110
111001
111010
111100
111111
Fскнф = (F∨X∨Y∨A∨B) ∧ (F∨X∨Y∨¬A∨¬B) ∧ (F∨X∨¬Y∨A∨B) ∧ (F∨X∨¬Y∨¬A∨¬B) ∧ (F∨¬X∨Y∨A∨B) ∧ (F∨¬X∨Y∨¬A∨¬B) ∧ (F∨¬X∨¬Y∨A∨B) ∧ (F∨¬X∨¬Y∨¬A∨¬B) ∧ (¬F∨X∨Y∨A∨B) ∧ (¬F∨X∨Y∨¬A∨¬B) ∧ (¬F∨X∨¬Y∨A∨B) ∧ (¬F∨X∨¬Y∨¬A∨¬B) ∧ (¬F∨¬X∨Y∨A∨B) ∧ (¬F∨¬X∨Y∨¬A∨¬B) ∧ (¬F∨¬X∨¬Y∨A∨¬B) ∧ (¬F∨¬X∨¬Y∨¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FXYABFж
000000
000011
000101
000110
001000
001011
001101
001110
010000
010011
010101
010110
011000
011011
011101
011110
100000
100011
100101
100110
101000
101011
101101
101110
110000
110011
110101
110110
111001
111010
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧X ⊕ C00100∧Y ⊕ C00010∧A ⊕ C00001∧B ⊕ C11000∧F∧X ⊕ C10100∧F∧Y ⊕ C10010∧F∧A ⊕ C10001∧F∧B ⊕ C01100∧X∧Y ⊕ C01010∧X∧A ⊕ C01001∧X∧B ⊕ C00110∧Y∧A ⊕ C00101∧Y∧B ⊕ C00011∧A∧B ⊕ C11100∧F∧X∧Y ⊕ C11010∧F∧X∧A ⊕ C11001∧F∧X∧B ⊕ C10110∧F∧Y∧A ⊕ C10101∧F∧Y∧B ⊕ C10011∧F∧A∧B ⊕ C01110∧X∧Y∧A ⊕ C01101∧X∧Y∧B ⊕ C01011∧X∧A∧B ⊕ C00111∧Y∧A∧B ⊕ C11110∧F∧X∧Y∧A ⊕ C11101∧F∧X∧Y∧B ⊕ C11011∧F∧X∧A∧B ⊕ C10111∧F∧Y∧A∧B ⊕ C01111∧X∧Y∧A∧B ⊕ C11111∧F∧X∧Y∧A∧B

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 0 ⊕ 0 = 0
Fж(01000) = С00000 ⊕ С01000 = 0 => С01000 = 0 ⊕ 0 = 0
Fж(00100) = С00000 ⊕ С00100 = 0 => С00100 = 0 ⊕ 0 = 0
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 0 ⊕ 1 = 1
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 0 ⊕ 1 = 1
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 1 => С01001 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 1 => С00110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 1 => С11100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 1 => С11010 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 1 => С10101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 1 => С01101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B ⊕ F∧X∧Y
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы