Таблица истинности для функции F∧(A∧B∧C∧D)≡C∧A∧N∧D∧D:


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

(A∧B)∧C:
ABCA∧B(A∧B)∧C
00000
00100
01000
01100
10000
10100
11010
11111

((A∧B)∧C)∧D:
ABCDA∧B(A∧B)∧C((A∧B)∧C)∧D
0000000
0001000
0010000
0011000
0100000
0101000
0110000
0111000
1000000
1001000
1010000
1011000
1100100
1101100
1110110
1111111

F∧(((A∧B)∧C)∧D):
FABCDA∧B(A∧B)∧C((A∧B)∧C)∧DF∧(((A∧B)∧C)∧D)
000000000
000010000
000100000
000110000
001000000
001010000
001100000
001110000
010000000
010010000
010100000
010110000
011001000
011011000
011101100
011111110
100000000
100010000
100100000
100110000
101000000
101010000
101100000
101110000
110000000
110010000
110100000
110110000
111001000
111011000
111101100
111111111

C∧A:
CAC∧A
000
010
100
111

(C∧A)∧N:
CANC∧A(C∧A)∧N
00000
00100
01000
01100
10000
10100
11010
11111

((C∧A)∧N)∧D:
CANDC∧A(C∧A)∧N((C∧A)∧N)∧D
0000000
0001000
0010000
0011000
0100000
0101000
0110000
0111000
1000000
1001000
1010000
1011000
1100100
1101100
1110110
1111111

(((C∧A)∧N)∧D)∧D:
CANDC∧A(C∧A)∧N((C∧A)∧N)∧D(((C∧A)∧N)∧D)∧D
00000000
00010000
00100000
00110000
01000000
01010000
01100000
01110000
10000000
10010000
10100000
10110000
11001000
11011000
11101100
11111111

(F∧(((A∧B)∧C)∧D))≡((((C∧A)∧N)∧D)∧D):
FABCDNA∧B(A∧B)∧C((A∧B)∧C)∧DF∧(((A∧B)∧C)∧D)C∧A(C∧A)∧N((C∧A)∧N)∧D(((C∧A)∧N)∧D)∧D(F∧(((A∧B)∧C)∧D))≡((((C∧A)∧N)∧D)∧D)
000000000000001
000001000000001
000010000000001
000011000000001
000100000000001
000101000000001
000110000000001
000111000000001
001000000000001
001001000000001
001010000000001
001011000000001
001100000000001
001101000000001
001110000000001
001111000000001
010000000000001
010001000000001
010010000000001
010011000000001
010100000010001
010101000011001
010110000010001
010111000011110
011000100000001
011001100000001
011010100000001
011011100000001
011100110010001
011101110011001
011110111010001
011111111011110
100000000000001
100001000000001
100010000000001
100011000000001
100100000000001
100101000000001
100110000000001
100111000000001
101000000000001
101001000000001
101010000000001
101011000000001
101100000000001
101101000000001
101110000000001
101111000000001
110000000000001
110001000000001
110010000000001
110011000000001
110100000010001
110101000011001
110110000010001
110111000011110
111000100000001
111001100000001
111010100000001
111011100000001
111100110010001
111101110011001
111110111110000
111111111111111

Общая таблица истинности:

FABCDNA∧B(A∧B)∧C((A∧B)∧C)∧DF∧(((A∧B)∧C)∧D)C∧A(C∧A)∧N((C∧A)∧N)∧D(((C∧A)∧N)∧D)∧DF∧(A∧B∧C∧D)≡C∧A∧N∧D∧D
000000000000001
000001000000001
000010000000001
000011000000001
000100000000001
000101000000001
000110000000001
000111000000001
001000000000001
001001000000001
001010000000001
001011000000001
001100000000001
001101000000001
001110000000001
001111000000001
010000000000001
010001000000001
010010000000001
010011000000001
010100000010001
010101000011001
010110000010001
010111000011110
011000100000001
011001100000001
011010100000001
011011100000001
011100110010001
011101110011001
011110111010001
011111111011110
100000000000001
100001000000001
100010000000001
100011000000001
100100000000001
100101000000001
100110000000001
100111000000001
101000000000001
101001000000001
101010000000001
101011000000001
101100000000001
101101000000001
101110000000001
101111000000001
110000000000001
110001000000001
110010000000001
110011000000001
110100000010001
110101000011001
110110000010001
110111000011110
111000100000001
111001100000001
111010100000001
111011100000001
111100110010001
111101110011001
111110111110000
111111111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABCDNF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101101
1101110
1110001
1110011
1110101
1110111
1111001
1111011
1111100
1111111
Fсднф = ¬F∧¬A∧¬B∧¬C∧¬D∧¬N ∨ ¬F∧¬A∧¬B∧¬C∧¬D∧N ∨ ¬F∧¬A∧¬B∧¬C∧D∧¬N ∨ ¬F∧¬A∧¬B∧¬C∧D∧N ∨ ¬F∧¬A∧¬B∧C∧¬D∧¬N ∨ ¬F∧¬A∧¬B∧C∧¬D∧N ∨ ¬F∧¬A∧¬B∧C∧D∧¬N ∨ ¬F∧¬A∧¬B∧C∧D∧N ∨ ¬F∧¬A∧B∧¬C∧¬D∧¬N ∨ ¬F∧¬A∧B∧¬C∧¬D∧N ∨ ¬F∧¬A∧B∧¬C∧D∧¬N ∨ ¬F∧¬A∧B∧¬C∧D∧N ∨ ¬F∧¬A∧B∧C∧¬D∧¬N ∨ ¬F∧¬A∧B∧C∧¬D∧N ∨ ¬F∧¬A∧B∧C∧D∧¬N ∨ ¬F∧¬A∧B∧C∧D∧N ∨ ¬F∧A∧¬B∧¬C∧¬D∧¬N ∨ ¬F∧A∧¬B∧¬C∧¬D∧N ∨ ¬F∧A∧¬B∧¬C∧D∧¬N ∨ ¬F∧A∧¬B∧¬C∧D∧N ∨ ¬F∧A∧¬B∧C∧¬D∧¬N ∨ ¬F∧A∧¬B∧C∧¬D∧N ∨ ¬F∧A∧¬B∧C∧D∧¬N ∨ ¬F∧A∧B∧¬C∧¬D∧¬N ∨ ¬F∧A∧B∧¬C∧¬D∧N ∨ ¬F∧A∧B∧¬C∧D∧¬N ∨ ¬F∧A∧B∧¬C∧D∧N ∨ ¬F∧A∧B∧C∧¬D∧¬N ∨ ¬F∧A∧B∧C∧¬D∧N ∨ ¬F∧A∧B∧C∧D∧¬N ∨ F∧¬A∧¬B∧¬C∧¬D∧¬N ∨ F∧¬A∧¬B∧¬C∧¬D∧N ∨ F∧¬A∧¬B∧¬C∧D∧¬N ∨ F∧¬A∧¬B∧¬C∧D∧N ∨ F∧¬A∧¬B∧C∧¬D∧¬N ∨ F∧¬A∧¬B∧C∧¬D∧N ∨ F∧¬A∧¬B∧C∧D∧¬N ∨ F∧¬A∧¬B∧C∧D∧N ∨ F∧¬A∧B∧¬C∧¬D∧¬N ∨ F∧¬A∧B∧¬C∧¬D∧N ∨ F∧¬A∧B∧¬C∧D∧¬N ∨ F∧¬A∧B∧¬C∧D∧N ∨ F∧¬A∧B∧C∧¬D∧¬N ∨ F∧¬A∧B∧C∧¬D∧N ∨ F∧¬A∧B∧C∧D∧¬N ∨ F∧¬A∧B∧C∧D∧N ∨ F∧A∧¬B∧¬C∧¬D∧¬N ∨ F∧A∧¬B∧¬C∧¬D∧N ∨ F∧A∧¬B∧¬C∧D∧¬N ∨ F∧A∧¬B∧¬C∧D∧N ∨ F∧A∧¬B∧C∧¬D∧¬N ∨ F∧A∧¬B∧C∧¬D∧N ∨ F∧A∧¬B∧C∧D∧¬N ∨ F∧A∧B∧¬C∧¬D∧¬N ∨ F∧A∧B∧¬C∧¬D∧N ∨ F∧A∧B∧¬C∧D∧¬N ∨ F∧A∧B∧¬C∧D∧N ∨ F∧A∧B∧C∧¬D∧¬N ∨ F∧A∧B∧C∧¬D∧N ∨ F∧A∧B∧C∧D∧N
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABCDNF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101101
1101110
1110001
1110011
1110101
1110111
1111001
1111011
1111100
1111111
Fскнф = (F∨¬A∨B∨¬C∨¬D∨¬N) ∧ (F∨¬A∨¬B∨¬C∨¬D∨¬N) ∧ (¬F∨¬A∨B∨¬C∨¬D∨¬N) ∧ (¬F∨¬A∨¬B∨¬C∨¬D∨N)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABCDNFж
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111110
1000001
1000011
1000101
1000111
1001001
1001011
1001101
1001111
1010001
1010011
1010101
1010111
1011001
1011011
1011101
1011111
1100001
1100011
1100101
1100111
1101001
1101011
1101101
1101110
1110001
1110011
1110101
1110111
1111001
1111011
1111100
1111111

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧F ⊕ C010000∧A ⊕ C001000∧B ⊕ C000100∧C ⊕ C000010∧D ⊕ C000001∧N ⊕ C110000∧F∧A ⊕ C101000∧F∧B ⊕ C100100∧F∧C ⊕ C100010∧F∧D ⊕ C100001∧F∧N ⊕ C011000∧A∧B ⊕ C010100∧A∧C ⊕ C010010∧A∧D ⊕ C010001∧A∧N ⊕ C001100∧B∧C ⊕ C001010∧B∧D ⊕ C001001∧B∧N ⊕ C000110∧C∧D ⊕ C000101∧C∧N ⊕ C000011∧D∧N ⊕ C111000∧F∧A∧B ⊕ C110100∧F∧A∧C ⊕ C110010∧F∧A∧D ⊕ C110001∧F∧A∧N ⊕ C101100∧F∧B∧C ⊕ C101010∧F∧B∧D ⊕ C101001∧F∧B∧N ⊕ C100110∧F∧C∧D ⊕ C100101∧F∧C∧N ⊕ C100011∧F∧D∧N ⊕ C011100∧A∧B∧C ⊕ C011010∧A∧B∧D ⊕ C011001∧A∧B∧N ⊕ C010110∧A∧C∧D ⊕ C010101∧A∧C∧N ⊕ C010011∧A∧D∧N ⊕ C001110∧B∧C∧D ⊕ C001101∧B∧C∧N ⊕ C001011∧B∧D∧N ⊕ C000111∧C∧D∧N ⊕ C111100∧F∧A∧B∧C ⊕ C111010∧F∧A∧B∧D ⊕ C111001∧F∧A∧B∧N ⊕ C110110∧F∧A∧C∧D ⊕ C110101∧F∧A∧C∧N ⊕ C110011∧F∧A∧D∧N ⊕ C101110∧F∧B∧C∧D ⊕ C101101∧F∧B∧C∧N ⊕ C101011∧F∧B∧D∧N ⊕ C100111∧F∧C∧D∧N ⊕ C011110∧A∧B∧C∧D ⊕ C011101∧A∧B∧C∧N ⊕ C011011∧A∧B∧D∧N ⊕ C010111∧A∧C∧D∧N ⊕ C001111∧B∧C∧D∧N ⊕ C111110∧F∧A∧B∧C∧D ⊕ C111101∧F∧A∧B∧C∧N ⊕ C111011∧F∧A∧B∧D∧N ⊕ C110111∧F∧A∧C∧D∧N ⊕ C101111∧F∧B∧C∧D∧N ⊕ C011111∧A∧B∧C∧D∧N ⊕ C111111∧F∧A∧B∧C∧D∧N

Так как Fж(000000) = 1, то С000000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 1 => С100000 = 1 ⊕ 1 = 0
Fж(010000) = С000000 ⊕ С010000 = 1 => С010000 = 1 ⊕ 1 = 0
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 1 ⊕ 1 = 0
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 1 ⊕ 1 = 0
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 1 ⊕ 1 = 0
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 1 ⊕ 1 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 1 => С110000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 1 => С101000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 1 => С100100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 1 => С100010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 1 => С100001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 1 => С011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 1 => С010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 1 => С010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 1 => С010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 1 => С001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 1 => С001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 1 => С001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 1 => С000110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 1 => С000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 1 => С000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 1 => С111000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 1 => С110100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 1 => С110010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 1 => С110001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 1 => С101100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 1 => С101010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 1 => С101001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 1 => С100110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 1 => С100101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 1 => С100011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 1 => С010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 1 => С010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 1 => С001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 1 => С111100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 1 => С111010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 1 => С111001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 1 => С110110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 1 => С110101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 1 => С110011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 1 => С101110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 1 => С101101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 1 => С101011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 1 => С100111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 1 => С011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 0 => С010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 1 => С001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 0 => С111110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 1 => С111101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 1 => С111011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 0 => С110111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 1 => С101111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 0 => С011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 1 => С111111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A∧C∧D∧N ⊕ F∧A∧B∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы