Таблица истинности для функции (X∨¬Y)⊕(¬X∧Z):


Промежуточные таблицы истинности:
¬Y:
Y¬Y
01
10

X∨(¬Y):
XY¬YX∨(¬Y)
0011
0100
1011
1101

¬X:
X¬X
01
10

(¬X)∧Z:
XZ¬X(¬X)∧Z
0010
0111
1000
1100

(X∨(¬Y))⊕((¬X)∧Z):
XYZ¬YX∨(¬Y)¬X(¬X)∧Z(X∨(¬Y))⊕((¬X)∧Z)
00011101
00111110
01000100
01100111
10011001
10111001
11001001
11101001

Общая таблица истинности:

XYZ¬YX∨(¬Y)¬X(¬X)∧Z(X∨¬Y)⊕(¬X∧Z)
00011101
00111110
01000100
01100111
10011001
10111001
11001001
11101001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0010
0100
0111
1001
1011
1101
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0010
0100
0111
1001
1011
1101
1111
Fскнф = (X∨Y∨¬Z) ∧ (X∨¬Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0010
0100
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ Y ⊕ Z ⊕ X∧Y ⊕ X∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы