Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬(X∧Y∧¬Z→¬X)⊕X≡¬Y≡¬Z≡Z∧(X≡Y)∨Z∧¬((X↓¬Y)↓(¬X↓Y))⊕X:
Промежуточные таблицы истинности:¬Z: ¬X: X∧Y: (X∧Y)∧(¬Z): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
((X∧Y)∧(¬Z))→(¬X): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
X≡Y: ¬Y: X↓(¬Y): X | Y | ¬Y | X↓(¬Y) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
(¬X)↓Y: X | Y | ¬X | (¬X)↓Y | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
(X↓(¬Y))↓((¬X)↓Y): X | Y | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
¬(((X∧Y)∧(¬Z))→(¬X)): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | ¬(((X∧Y)∧(¬Z))→(¬X)) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
¬((X↓(¬Y))↓((¬X)↓Y)): X | Y | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬((X↓(¬Y))↓((¬X)↓Y)) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Z∧(X≡Y): Z | X | Y | X≡Y | Z∧(X≡Y) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Z∧(¬((X↓(¬Y))↓((¬X)↓Y))): Z | X | Y | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬((X↓(¬Y))↓((¬X)↓Y)) | Z∧(¬((X↓(¬Y))↓((¬X)↓Y))) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
(Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))): Z | X | Y | X≡Y | Z∧(X≡Y) | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬((X↓(¬Y))↓((¬X)↓Y)) | Z∧(¬((X↓(¬Y))↓((¬X)↓Y))) | (Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
(¬(((X∧Y)∧(¬Z))→(¬X)))⊕X: X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | ¬(((X∧Y)∧(¬Z))→(¬X)) | (¬(((X∧Y)∧(¬Z))→(¬X)))⊕X | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X: Z | X | Y | X≡Y | Z∧(X≡Y) | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬((X↓(¬Y))↓((¬X)↓Y)) | Z∧(¬((X↓(¬Y))↓((¬X)↓Y))) | (Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))) | ((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | ¬(((X∧Y)∧(¬Z))→(¬X)) | (¬(((X∧Y)∧(¬Z))→(¬X)))⊕X | ¬Y | ((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
(((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | ¬(((X∧Y)∧(¬Z))→(¬X)) | (¬(((X∧Y)∧(¬Z))→(¬X)))⊕X | ¬Y | ((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y) | ¬Z | (((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
((((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z))≡(((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X): X | Y | Z | X∧Y | ¬Z | (X∧Y)∧(¬Z) | ¬X | ((X∧Y)∧(¬Z))→(¬X) | ¬(((X∧Y)∧(¬Z))→(¬X)) | (¬(((X∧Y)∧(¬Z))→(¬X)))⊕X | ¬Y | ((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y) | ¬Z | (((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z) | X≡Y | Z∧(X≡Y) | ¬Y | X↓(¬Y) | ¬X | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬((X↓(¬Y))↓((¬X)↓Y)) | Z∧(¬((X↓(¬Y))↓((¬X)↓Y))) | (Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))) | ((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X | ((((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z))≡(((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
Общая таблица истинности:X | Y | Z | ¬Z | ¬X | X∧Y | (X∧Y)∧(¬Z) | ((X∧Y)∧(¬Z))→(¬X) | X≡Y | ¬Y | X↓(¬Y) | (¬X)↓Y | (X↓(¬Y))↓((¬X)↓Y) | ¬(((X∧Y)∧(¬Z))→(¬X)) | ¬((X↓(¬Y))↓((¬X)↓Y)) | Z∧(X≡Y) | Z∧(¬((X↓(¬Y))↓((¬X)↓Y))) | (Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))) | (¬(((X∧Y)∧(¬Z))→(¬X)))⊕X | ((Z∧(X≡Y))∨(Z∧(¬((X↓(¬Y))↓((¬X)↓Y)))))⊕X | ((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y) | (((¬(((X∧Y)∧(¬Z))→(¬X)))⊕X)≡(¬Y))≡(¬Z) | ¬(X∧Y∧¬Z→¬X)⊕X≡¬Y≡¬Z≡Z∧(X≡Y)∨Z∧¬((X↓¬Y)↓(¬X↓Y))⊕X | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X | Y | Z | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (X∨¬Y∨Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨¬Y∨¬Z) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X | Y | Z | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X ⊕ C 010∧Y ⊕ C 001∧Z ⊕ C 110∧X∧Y ⊕ C 101∧X∧Z ⊕ C 011∧Y∧Z ⊕ C 111∧X∧Y∧Z Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 1 ⊕ 1 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 1 ⊕ 0 = 1 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ Y ⊕ X∧Y ⊕ X∧Y∧Z Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|