Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (B→C)∧(B→D):
Промежуточные таблицы истинности:B→C: B→D: (B→C)∧(B→D): B | C | D | B→C | B→D | (B→C)∧(B→D) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:B | C | D | B→C | B→D | (B→C)∧(B→D) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: B | C | D | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
F сднф = ¬B∧¬C∧¬D ∨ ¬B∧¬C∧D ∨ ¬B∧C∧¬D ∨ ¬B∧C∧D ∨ B∧C∧D Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: B | C | D | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
F скнф = (¬B∨C∨D) ∧ (¬B∨C∨¬D) ∧ (¬B∨¬C∨D) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции B | C | D | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧B ⊕ C 010∧C ⊕ C 001∧D ⊕ C 110∧B∧C ⊕ C 101∧B∧D ⊕ C 011∧C∧D ⊕ C 111∧B∧C∧D Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 1 ⊕ 0 = 1 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 1 => С 011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 1 => С 111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ B ⊕ B∧C∧D Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|